Thursday, February 2, 2023
HomeNatureUnitary p-wave interactions between fermions in an optical lattice

Unitary p-wave interactions between fermions in an optical lattice


  • Volovik, G. The Universe in a Helium Droplet, Worldwide Collection of Monographs on Physics (Clarendon Press, 2003).

  • Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mizushima, T. et al. Symmetry-protected topological superfluids and superconductors: from the fundamentals to 3He. J. Phys. Soc. Jpn 85, 022001 (2016).

  • Botelho, S. S. & Sá de Melo, C. A. R. Quantum part transition within the BCS-to-BEC evolution of p-wave Fermi gases. J. Low Temp. Phys. 140, 409–428 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gurarie, V., Radzihovsky, L. & Andreev, A. V. Quantum part transitions throughout a p-wave Feshbach resonance. Phys. Rev. Lett. 94, 230403 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cheng, C.-H. & Yip, S.-Ok. Anisotropic Fermi superfluid by way of p-wave Feshbach resonance. Phys. Rev. Lett. 95, 070404 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Levinsen, J., Cooper, N. R. & Gurarie, V. Strongly resonant p-wave superfluids. Phys. Rev. Lett. 99, 210402 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, E. & Liu, W. V. Orbital order in Mott insulators of spinless p-band fermions. Phys. Rev. Lett. 100, 160403 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Tewari, S., Das Sarma, S., Nayak, C., Zhang, C. & Zoller, P. Quantum computation utilizing vortices and majorana zero modes of a px + ipy superfluid of fermionic chilly atoms. Phys. Rev. Lett. 98, 010506 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, C., Tewari, S. & Das Sarma, S. Bell’s inequality and common quantum gates in a cold-atom chiral fermionic p-wave superfluid. Phys. Rev. Lett. 99, 220502 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Jona-Lasinio, M., Pricoupenko, L. & Castin, Y. Three absolutely polarized fermions near a p-wave Feshbach resonance. Phys. Rev. A 77, 043611 (2008).

    Article 
    ADS 

    Google Scholar
     

  • D’Incao, J. P., Esry, B. D. & Greene, C. H. Ultracold atom-molecule collisions with fermionic atoms. Phys. Rev. A 77, 052709 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Nishida, Y., Moroz, S. & Son, D. T. Tremendous Efimov impact of resonantly interacting fermions in two dimensions. Phys. Rev. Lett. 110, 235301 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y., D’Incao, J. P. & Greene, C. H. Common three-body physics for fermionic dipoles. Phys. Rev. Lett. 107, 233201 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Martin, M. J. et al. A quantum many-body spin system in an optical lattice clock. Science 341, 632–636 (2013).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Lemke, N. D. et al. p-wave chilly collisions in an optical lattice clock. Phys. Rev. Lett. 107, 103902 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Regal, C. A., Ticknor, C., Bohn, J. L. & Jin, D. S. Tuning p-wave interactions in an ultracold Fermi gasoline of atoms. Phys. Rev. Lett. 90, 053201 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Suno, H., Esry, B. D. & Greene, C. H. Recombination of three ultracold fermionic atoms. Phys. Rev. Lett. 90, 053202 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. p-wave Feshbach resonances of ultracold 6Li. Phys. Rev. A 70, 030702 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Schunck, C. H. et al. Feshbach resonances in fermionic 6Li. Phys. Rev. A 71, 045601 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Günter, Ok., Stöferle, T., Moritz, H., Köhl, M. & Esslinger, T. P-wave interactions in low-dimensional fermionic gases. Phys. Rev. Lett. 95, 230401 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Chevy, F. et al. Resonant scattering properties near a p-wave Feshbach resonance. Phys. Rev. A 71, 062710 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Waseem, M., Yoshida, J., Saito, T. & Mukaiyama, T. Unitarity-limited conduct of three-body collisions in a p-wave interacting Fermi gasoline. Phys. Rev. A 98, 020702 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, X. & Liu, W. V. Physics of upper orbital bands in optical lattices: a evaluation. Rep. Prog. Phys. 79, 116401 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Dutta, O. et al. Non-standard Hubbard fashions in optical lattices: a evaluation. Rep. Prog. Phys. 78, 066001 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Han, Y.-J. et al. Stabilization of the p-wave superfluid state in an optical lattice. Phys. Rev. Lett. 103, 070404 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Fedorov, A. Ok., Yudson, V. I. & Shlyapnikov, G. V. p-wave superfluidity of atomic lattice fermions. Phys. Rev. A 95, 043615 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Alicea, J. New instructions within the pursuit of Majorana fermions in strong state methods. Rep. Prog. Phys. 75, 076501 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Chang, Y.-T., Senaratne, R., Cavazos-Cavazos, D. & Hulet, R. G. Collisional lack of one-dimensional fermions close to a p-wave Feshbach resonance. Phys. Rev. Lett. 125, 263402 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marcum, A. S., Fonta, F. R., Mawardi Ismail, A. & O’Hara, Ok. M. Suppression of three-body loss close to a p-wave resonance on account of quasi-1D confinement. Preprint at https://doi.org/10.48550/arXiv.2007.15783 (2020).

  • Idziaszek, Z. Analytical options for 2 atoms in a harmonic lure: p-wave interactions. Phys. Rev. A 79, 062701 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Kanjilal, Ok. & Blume, D. Nondivergent pseudopotential remedy of spin-polarized fermions beneath one- and three-dimensional harmonic confinement. Phys. Rev. A 70, 042709 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Gaebler, J. P., Stewart, J. T., Bohn, J. L. & Jin, D. S. P-wave Feshbach molecules. Phys. Rev. Lett. 98, 200403 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stöferle, T., Moritz, H., Günter, Ok., Köhl, M. & Esslinger, T. Molecules of fermionic atoms in an optical lattice. Phys. Rev. Lett. 96, 030401 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Hartke, T., Oreg, B., Jia, N. & Zwierlein, M. Quantum register of fermion pairs. Nature 601, 537–541 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Müller, T., Fölling, S., Widera, A. & Bloch, I. State preparation and dynamics of ultracold atoms in increased lattice orbitals. Phys. Rev. Lett. 99, 200405 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Fuchs, J. et al. Binding energies of 6Li p-wave Feshbach molecules. Phys. Rev. A 77, 053616 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Busch, T., Englert, B.-G., Rzażewski, Ok. & Wilkens, M. Two chilly atoms in a harmonic lure. Discovered. Phys. 28, 549–559 (1998).

    Article 

    Google Scholar
     

  • Ticknor, C., Regal, C. A., Jin, D. S. & Bohn, J. L. Multiplet construction of Feshbach resonances in nonzero partial waves. Phys. Rev. A 69, 042712 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Ahmed-Braun, D. J. M. et al. Probing open- and closed-channel p-wave resonances. Phys. Rev. Res. 3, 033269 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Inada, Y. et al. Collisional properties of p-wave Feshbach molecules. Phys. Rev. Lett. 101, 100401 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Foster, M. S., Gurarie, V., Dzero, M. & Yuzbashyan, E. A. Quench-induced floquet topological p-wave superfluids. Phys. Rev. Lett. 113, 076403 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Imada, M., Fujimori, A. & Tokura, Y. Metallic-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mamaev, M. et al. Collective p-wave orbital dynamics of ultracold fermions. Phys. Rev. Lett. 127, 143401 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bakr, W. S. et al. Orbital excitation blockade and algorithmic cooling in quantum gases. Nature 480, 500–503 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mamaev, M., Thywissen, J. H. & Rey, A. M. Quantum computation toolbox for decoherence-free qubits utilizing multi-band alkali atoms. Adv. Quantum Technol. 3, 1900132 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Marco, L. D. et al. A degenerate Fermi gasoline of polar molecules. Science 363, 853–856 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Duda, M. et al. Lengthy-lived fermionic Feshbach molecules with tunable p-wave interactions. Preprint at https://doi.org/10.48550/arXiv.2202.06940 (2022).

  • Edge, G. J. A. et al. Imaging and addressing of particular person fermionic atoms in an optical lattice. Phys. Rev. A 92, 063406 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, R. et al. Conductivity spectrum of ultracold atoms in an optical lattice. Phys. Rev. Lett. 122, 153602 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Omont, A. On the speculation of collisions of atoms in Rydberg states with impartial particles. J. Phys. France 38, 1343–1359 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Mentink, J. & Kokkelmans, S. Two interacting atoms in an optical lattice web site with anharmonic phrases. Phys. Rev. A 79, 032709 (2009).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular