Wednesday, February 8, 2023
HomeNatureTriassic stem caecilian helps dissorophoid origin of dwelling amphibians

Triassic stem caecilian helps dissorophoid origin of dwelling amphibians


  • Pardo, J. D., Lennie, Ok. & Anderson, J. S. Can we reliably calibrate deep nodes within the tetrapod tree? Case research in deep tetrapod divergences. Entrance. Genet. 11, 1159 (2020).

    Article 

    Google Scholar
     

  • Rage, J.-C. & Roček, Z. Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the early Triassic. Palaeontographica A 206, 1–16 (1989).


    Google Scholar
     

  • Evans, S. E. & Borsuk-Białynicka, M. A stem-group frog from the Early Triassic of Poland. Acta Palaeontol. Pol. 43, 573–580 (1998).

    Article 

    Google Scholar
     

  • Heckert, A. B., Mitchell, J. S., Schneider, V. P. & Olsen, P. E. Numerous new microvertebrate assemblage from the Higher Triassic Cumnock Formation, Sanford Subbasin, North Carolina, USA. J. Paleontol. 86, 368–390 (2012).

    Article 

    Google Scholar
     

  • Stocker, M. R. et al. The earliest equatorial report of frogs from the Late Triassic of Arizona. Biol. Lett. 15, 20180922 (2019).

    Article 

    Google Scholar
     

  • Schoch, R. R., Werneburg, R. & Voigt, S. A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders. Proc. Natl Acad. Sci. USA 117, 11584–11588 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anderson, J. S., Reisz, R. R., Scott, D., Fröbisch, N. B. & Sumida, S. S. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature 453, 515–518 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anderson, J. S. Focal evaluate: the origin(s) of recent amphibians. Evol. Biol. 35, 231–247 (2008).

    Article 

    Google Scholar
     

  • Sigurdsen, T. & Bolt, J. R. The Decrease Permian amphibamid Doleserpeton (Temnospondyli: Dissorophoidea), the interrelationships of amphibamids, and the origin of recent amphibians. J. Vertebr. Paleontol. 30, 1360–1377 (2010).

    Article 

    Google Scholar
     

  • Schoch, R. R. The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls. J. Paleontol. 93, 137–156 (2019).

    Article 

    Google Scholar
     

  • Jenkins, P. A. & Walsh, D. M. An Early Jurassic caecilian with limbs. Nature 365, 246–250 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Jenkins, F. A., Walsh, D. M. & Carroll, R. L. Anatomy of Eocaecilia micropodia, a limbed caecilian of the Early Jurassic. Bull. Mus. Comp. Zool. 158, 285–365 (2007).

    Article 

    Google Scholar
     

  • Maddin, H. C., Jenkins, F. A. Jr & Anderson, J. S. The braincase of Eocaecilia micropodia (Lissamphibia, Gymnophiona) and the origin of caecilians. PLoS ONE 7, e50743 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pardo, J. D., Small, B. J. & Huttenlocker, A. Ok. Stem caecilian from the Triassic of Colorado sheds mild on the origins of Lissamphibia. Proc. Natl Acad. Sci. USA 114, E5389–E5395 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nussbaum, R. A. The evolution of a singular twin jaw‐closing mechanism in caecilians: (Amphibia: Gymnophiona) and its bearing on caecilian ancestry. J. Zool. 199, 545–554 (1983).

    Article 

    Google Scholar
     

  • Kleinteich, T., Haas, A. & Summers, A. P. Caecilian jaw-closing mechanics: integrating two muscle methods. J. R. Soc. Interface 5, 1491–1504 (2008).

    Article 

    Google Scholar
     

  • Sherratt, E., Gower, D. J., Klingenberg, C. P. & Wilkinson, M. Evolution of cranial form in caecilians (Amphibia: Gymnophiona). Evol. Biol. 41, 528–545 (2014).

    Article 

    Google Scholar
     

  • Schmidt, A. & Wake, M. H. Olfactory and vomeronasal methods of caecilians (Amphibia: Gymnophiona). J. Morphol. 205, 255–268 (1990).

    Article 

    Google Scholar
     

  • Pincheira‐Donoso, D., Meiri, S., Jara, M., Olalla‐Tárraga, M. Á. & Hodgson, D. J. World patterns of physique dimension evolution are pushed by precipitation in legless amphibians. Ecography 42, 1682–1690 (2019).

    Article 

    Google Scholar
     

  • San Mauro, D., Vences, M., Alcobendas, M., Zardoya, R. & Meyer, A. Preliminary diversification of dwelling amphibians predated the breakup of Pangaea. Am. Nat. 165, 590–599 (2005).

    Article 

    Google Scholar
     

  • Padian, Ok. & Sues, H.-D. in Nice Transformations in Vertebrate Evolution (eds Dial, Ok. P., Shubin, N. & Brainerd, E. L.) 351–374 (Univ. Chicago Press, 2021).

  • Santos, R. O., Laurin, M. & Zaher, H. A evaluate of the fossil report of caecilians (Lissamphibia: Gymnophionomorpha) with feedback on its use to calibrate molecular timetrees. Biol. J. Linn. Soc. 131, 737–755 (2020).

    Article 

    Google Scholar
     

  • Evans, S. E. & Sigogneau‐Russell, D. A stem‐group caecilian (Lissamphibia: Gymnophiona) from the Decrease Cretaceous of North Africa. Palaeontology 44, 259–273 (2001).

    Article 

    Google Scholar
     

  • Ramezani, J. et al. Excessive-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest Nationwide Park (Arizona, USA): temporal constraints on the early evolution of dinosaurs. GSA Bull. 123, 2142–2159 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Rasmussen, C. et al. U-Pb zircon geochronology and depositional age fashions for the Higher Triassic Chinle Formation (Petrified Forest Nationwide Park, Arizona, USA): implications for Late Triassic paleoecological and paleoenvironmental change. GSA Bull. 133, 539–558 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nordt, L., Atchley, S. & Dworkin, S. Collapse of the Late Triassic megamonsoon in western equatorial Pangea, present-day American Southwest. GSA Bull. 127, 1798–1815 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Martz, J. W. & Parker, W. G. in Terrestrial Depositional Programs (eds Zeigler, Ok. E. & Parker, W. G.) 39–125 (Elsevier, 2017).

  • Daza, J. D. et al. Enigmatic amphibians in mid-Cretaceous amber had been chameleon-like ballistic feeders. Science 370, 687–691 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gardner, J. D. Monophyly and affinities of albanerpetontid amphibians (Temnospondyli; Lissamphibia). Zool. J. Linn. Soc. 131, 309–352 (2001).

    Article 

    Google Scholar
     

  • Bolt, J. R. Lissamphibian origins: potential protolissamphibian from the Decrease Permian of Oklahoma. Science 166, 888–891 (1969).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gardner, J. D. & Averianov, A. O. Albanerpetontid amphibians from the Higher Cretaceous of Center Asia. Acta Palaeontol. Pol. 43, 453–476 (1998).


    Google Scholar
     

  • Carroll, R. L. The Palaeozoic ancestry of salamanders, frogs and caecilians. Zool. J. Linn. Soc. 150, 1–140 (2007).

    Article 

    Google Scholar
     

  • Müller, H., Oommen, O. V. & Bartsch, P. Skeletal improvement of the direct-developing caecilian Gegeneophis ramaswamii (Amphibia: Gymnophiona: Caeciliidae). Zoomorphology 124, 171–188 (2005).

    Article 

    Google Scholar
     

  • Ahlberg, P. E. & Clack, J. A. Decrease jaws, decrease tetrapods—a evaluate based mostly on the Devonian genus Acanthostega. Earth Environ. Sci. Trans. R. Soc. Edinb. 89, 11–46 (1998).

    Article 

    Google Scholar
     

  • Bolt, J. R. & Lombard, R. E. The mandible of the primitive tetrapod Greererpeton, and the early evolution of the tetrapod decrease jaw. J. Paleontol. 75, 1016–1042 (2001).

    Article 

    Google Scholar
     

  • Shishkin, M. A. & Sulej, T. The Early Triassic temnospondyls of the Czatkowice 1 tetrapod assemblage. Acta Palaeontol. Pol. 65, 31–77 (2009).


    Google Scholar
     

  • Anderson, J. S., Scott, D. & Reisz, R. R. The anatomy of the dermatocranium and mandible of Cacops aspidephorus Williston, 1910 (Temnospondyli: Dissorophidae), from the Decrease Permian of Texas. J. Vertebr. Paleontol. 40, e1776720 (2020).

    Article 

    Google Scholar
     

  • Wilkinson, M., San Mauro, D., Sherratt, E. & Gower, D. J. A nine-family classification of caecilians (Amphibia: Gymnophiona). Zootaxa 2874, 41–64 (2011).

    Article 

    Google Scholar
     

  • Jared, C. et al. Pores and skin gland concentrations tailored to completely different evolutionary pressures within the head and posterior areas of the caecilian Siphonops annulatus. Sci. Rep. 8, 3576 (2018).

    Article 
    ADS 

    Google Scholar
     

  • O’Reilly, J. C., Ritter, D. A. & Provider, D. R. Hydrostatic locomotion in a limbless tetrapod. Nature 386, 269–272 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Muttoni, G. & Kent, D. V. Jurassic monster polar shift confirmed by sequential paleopoles from Adria, promontory of Africa. J. Geophys. Res. 124, 3288–3306 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Parsons, T. S. & Williams, E. E. The relationships of the trendy Amphibia: a re-examination. Q. Rev. Biol. 38, 26–53 (1963).

    Article 

    Google Scholar
     

  • Marjanović, D. & Laurin, M. A reevaluation of the proof supporting an unorthodox speculation on the origin of extant amphibians. Contrib. Zool. 77, 149–199 (2008).

    Article 

    Google Scholar
     

  • Jenkins, X. A. et al. Utilizing guide ungual morphology to foretell substrate use within the Drepanosauromorpha and the outline of a brand new species. J. Vertebr. Paleontol. 40, e1810058 (2020).

    Article 

    Google Scholar
     

  • Kligman, B. T., Marsh, A. D., Nesbitt, S. J., Parker, W. G. & Stocker, M. R. New trilophosaurid species demonstrates a decline in allokotosaur variety throughout the Adamanian–Revueltian boundary within the Late Triassic of western North America. Palaeodiversity 13, 25–37 (2020).

    Article 

    Google Scholar
     

  • Marsh, A. D., Smith, M. E., Parker, W. G., Irmis, R. B. & Kligman, B. T. Skeletal anatomy of Acaenasuchus geoffreyi Lengthy and Murry, 1995 (Archosauria: Pseudosuchia) and its implications for the origin of the aetosaurian carapace. J. Vertebr. Paleontol. 40, e1794885 (2020).

    Article 

    Google Scholar
     

  • Marsh, A. D. & Parker, W. G. New dinosauromorph specimens from Petrified Forest Nationwide Park and a worldwide biostratigraphic evaluate of Triassic dinosauromorph physique fossils. PaleoBios https://doi.org/10.5070/P9371050859 (2020).

  • Kligman, B. T., Marsh, A. D., Sues, H.-D. & Sidor, C. A. A brand new non-mammalian eucynodont from the Chinle Formation (Triassic: Norian), and implications for the early Mesozoic equatorial cynodont report. Biol. Lett. 16, 20200631 (2020).

    Article 

    Google Scholar
     

  • Huttenlocker, A. Ok., Pardo, J. D., Small, B. J. & Anderson, J. S. Cranial morphology of recumbirostrans (Lepospondyli) from the Permian of Kansas and Nebraska, and early morphological evolution inferred by micro-computed tomography. J. Vertebr. Paleontol. 33, 540–552 (2013).

    Article 

    Google Scholar
     

  • Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. Hidden morphological variety amongst early tetrapods. Nature 546, 642–645 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marjanović, D. & Laurin, M. Phylogeny of Paleozoic limbed vertebrates reassessed by revision and enlargement of the most important revealed related knowledge matrix. PeerJ 6, e5565 (2019).

    Article 

    Google Scholar
     

  • Goloboff, P. A. & Catalano, S. A. TNT model 1.5, together with a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).

    Article 

    Google Scholar
     

  • Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic bushes. Bioinformatics 17, 754–755 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, P. O. A probability strategy to estimating phylogeny from discrete morphological character knowledge. Syst. Biol. 50, 913–925 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Eltink, E., Schoch, R. R. & Langer, M. C. Interrelationships, palaeobiogeography and early evolution of Stereospondylomorpha (Tetrapoda: Temnospondyli). J. Iber. Geol. 45, 251–267 (2019).

    Article 

    Google Scholar
     

  • Bystrow, A. Dvinosaurus als neotenische Kind der Stegocephalen. Acta Zool. 19, 209–295 (1938).

    Article 

    Google Scholar
     

  • Dutuit, J.-M. Introduction à l’étude paléontologique du Trias continental Marocain. Description des premiers stegocephales recueillis dans le couloir d’Argana (Atlas Occidental). Mémoires du Muséum Nationwide d’Histoire 36, 1–253 (1976).


    Google Scholar
     

  • Dias, E. V., Dias-da-Silva, S. & Schultz, C. L. A brand new short-snouted rhinesuchid from the Permian of southern Brazil. Revista Brasileira de Paleontologia 23, 98–122 (2020).

    Article 

    Google Scholar
     

  • Damiani, R. J. & Kitching, J. W. A brand new brachyopid temnospondyl from the Cynognathus Assemblage Zone, Higher Beaufort Group, South Africa. J. Vertebr. Paleontol. 23, 67–78 (2003).

    Article 

    Google Scholar
     

  • Schoch, R. R. & Witzmann, F. Cranial morphology of the plagiosaurid Gerrothorax pulcherrimus as an excessive instance of evolutionary stasis. Lethaia 45, 371–385 (2012).

    Article 

    Google Scholar
     

  • Schoch, R. R. Research on braincases of early tetrapods: Construction, morphological variety, and phylogeny-1 Trimerorhacis and different prmitive temnospondyls. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 213, 233–259 (1999).

    Article 

    Google Scholar
     

  • Ruta, M. & Bolt, J. R. The brachyopoid Hadrokkosaurus bradyi from the early Center Triassic of Arizona, and a phylogenetic evaluation of decrease jaw characters in temnospondyl amphibians. Acta Palaeontol. Pol. 53, 579–592 (2008).

    Article 

    Google Scholar
     

  • Bystrow, A. & Efremov, J. Benthosuchus sushkini Efr.—a labyrinthodont from the Eotriassic of Sharzhenga River. Trudy Paleontol. Inst. 10, 1–152 (1940).


    Google Scholar
     

  • Warren, A. Karoo tupilakosaurid: a relict from Gondwana. Earth Environ. Sci. Trans. R. Soc. Edinb. 89, 145–160 (1998).

    Article 

    Google Scholar
     

  • Holmes, R. B., Carroll, R. L. & Reisz, R. R. The primary articulated skeleton of Dendrerpeton acadianum (Temnospondyli, Dendrerpetontidae) from the Decrease Pennsylvanian locality of Joggins, Nova Scotia, and a evaluate of its relationships. J. Vertebr. Paleontol. 18, 64–79 (1998).

    Article 

    Google Scholar
     

  • Steyer, J. S. The primary articulated trematosaur ‘amphibian’ from the Decrease Triassic of Madagascar: implications for the phylogeny of the group. Palaeontol. 45, 771–793 (2002).

    Article 

    Google Scholar
     

  • Englehorn, J., Small, B. J. & Huttenlocker, A. A redescription of Acroplous vorax (Temnospondyli: Dvinosauria) based mostly on new specimens from the Early Permian of Nebraska and Kansas, USA. J. Vertebr. Paleontol. 28, 291–305 (2008).

    Article 

    Google Scholar
     

  • Warren, A. Laidleria uncovered: a redescription of Laidleria gracilis Kitching (1957), a temnospondyl from the Cynognathus Zone of South Africa. Zool. J. Linn. Soc. 122, 167–185 (1998).

    Article 

    Google Scholar
     

  • Bolt, J. R. & Chatterjee, S. A brand new temnospondyl amphibian from the Late Triassic of Texas. J. Paleontol. 74, 670–683 (2000).

    Article 

    Google Scholar
     

  • Milner, A. & Sequeira, S. The temnospondyl amphibians from the Viséan of east Kirkton, West Lothian, Scotland. Earth Environ. Sci. Trans. R. Soc. Edinb. 84, 331–361 (1993).


    Google Scholar
     

  • Schoch, R. R. & Milner, A. R. Encyclopedia of Paleoherpetology, Half 3A. Temnospondyli (Verlag Dr. Friedrich Pfeil, 2014).

  • Damiani, R., Schoch, R. R., Hellrung, H., Werneburg, R. & Gastou, S. The plagiosaurid temnospondyl Plagiosuchus pustuliferus (Amphibia: Temnospondyli) from the Center Triassic of Germany: anatomy and useful morphology of the cranium. Zool. J. Linn. Soc. 155, 348–373 (2009).

    Article 

    Google Scholar
     

  • Chernin, S. A brand new brachyopid, Batrachosuchus concordi sp. nov. from the Higher Luangwa Valley, Zambia with a redescription of Batrachosuchus browni Broom, 1903. Palaeontol. Afr. 20, 87–109 (1977).


    Google Scholar
     

  • Sulej, T. Osteology, variability, and evolution of Metoposaurus, a temnospondyl from the Late Triassic of Poland. Acta Palaeontol. Pol. 64, 29–139 (2007).


    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular