Sunday, February 5, 2023
HomeNatureTissue CD14+CD8+ T cells reprogrammed by myeloid cells and modulated by LPS

Tissue CD14+CD8+ T cells reprogrammed by myeloid cells and modulated by LPS


  • Crispe, I. N. Immune tolerance in liver illness. Hepatology 60, 2109–2117 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Protzer, U., Maini, M. Okay. & Knolle, P. A. Dwelling within the liver: hepatic infections. Nat. Rev. Immunol. 12, 201–213 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Macpherson, A. J., Heikenwalder, M. & Ganal-Vonarburg, S. C. The liver on the nexus of host-microbial interactions. Cell Host Microbe 20, 561–571 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wiest, R., Lawson, M. & Geuking, M. Pathological bacterial translocation in liver cirrhosis. J. Hepatol. 60, 197–209 (2014).

    Article 

    Google Scholar
     

  • Tripathi, A. et al. The gut-liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15, 397–411 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pallett, L. J. et al. IL-2excessive tissue-resident T cells within the human liver: sentinels for hepatotropic an infection. J. Exp. Med. 214, 1567–1580 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Burel, J. G. et al. Circulating T cell-monocyte complexes are markers of immune perturbations. eLife 8, e46045 (2019).

    Article 

    Google Scholar
     

  • Pallett, L. J. et al. Longevity and replenishment of human liver-resident reminiscence T cells and mononuclear phagocytes. J. Exp. Med. 217, e20200050 (2020).

    Article 

    Google Scholar
     

  • Fernandez-Ruiz, D. et al. Liver-resident reminiscence CD8+ T cells type a front-line protection in opposition to malaria liver-stage an infection. Immunity 45, 889–902 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Curbishley, S. M., Eksteen, B., Gladue, R. P., Lalor, P. & Adams, D. H. CXCR3 activation promotes lymphocyte transendothelial migration throughout human hepatic endothelium below fluid movement. Am. J. Pathol. 167, 887–899 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Liepelt, A. & Tacke, F. Stromal cell-derived factor-1 (SDF-1) as a goal in liver ailments. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G203–G209 (2016).

    Article 

    Google Scholar
     

  • Neumann, Okay. et al. Chemokine switch by liver sinusoidal endothelial cells contributes to the recruitment of CD4+ T cells into the murine liver. PLoS ONE 10, e0123867 (2015).

    Article 

    Google Scholar
     

  • Mazza, G. et al. Fast manufacturing of human liver scaffolds for purposeful tissue engineering by excessive shear stress oscillation-decellularization. Sci. Rep. 7, 5534 (2017).

    Article 
    ADS 

    Google Scholar
     

  • McQuitty, C. E., Williams, R., Chokshi, S. & Urbani, L. Immunomodulatory function of the extracellular matrix inside the liver illness microenvironment. Entrance. Immunol. 11, 574276 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McNamara, H. A. et al. Up-regulation of LFA-1 permits liver-resident reminiscence T cells to patrol and stay within the hepatic sinusoids. Sci. Immunol. 2, eaaj1996 (2017).

    Article 

    Google Scholar
     

  • Benechet, A. P. et al. Dynamics and genomic panorama of CD8+ T cells present process hepatic priming. Nature 574, 200–205 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • De Simone, G. et al. Identification of a Kupffer cell subset able to reverting the T cell dysfunction induced by hepatocellular priming. Immunity 54, 2089–2100 (2021).

    Article 

    Google Scholar
     

  • Wei, Y. et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 371, eabb1625 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Baumann, T. et al. Regulatory myeloid cells paralyze T cells via cell-cell switch of the metabolite methylglyoxal. Nat. Immunol. 21, 555–566 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Crispe, I. N. The liver as a lymphoid organ. Annu. Rev. Immunol. 27, 147–163 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Huang, L. R. et al. Intrahepatic myeloid-cell aggregates allow native proliferation of CD8+ T cells and profitable immunotherapy in opposition to persistent viral liver an infection. Nat. Immunol. 14, 574–583 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Krenkel, O. & Tacke, F. Liver macrophages in tissue homeostasis and illness. Nat. Rev. Immunol. 17, 306–321 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Pallett, L. J. & Maini, M. Okay. Liver-resident reminiscence T cells: life in lockdown. Semin. Immunopathol. 44, 813–825 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Legut, M. et al. A genome-scale display screen for artificial drivers of T cell proliferation. Nature 603, 728–735 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kumar, B. V. et al. Human tissue-resident reminiscence T cells are outlined by core transcriptional and purposeful signatures in lymphoid and mucosal websites. Cell Rep. 20, 2921–2934 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Smith, L. Okay. et al. Interleukin-10 straight inhibits CD8+ T cell operate by enhancing N-glycan branching to lower antigen sensitivity. Immunity 48, 299–312 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fioravanti, J. et al. Effector CD8+ T cell-derived interleukin-10 enhances acute liver immunopathology. J. Hepatol. 67, 543–548 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schurich, A. et al. Dynamic regulation of CD8 T cell tolerance induction by liver sinusoidal endothelial cells. J. Immunol. 184, 4107–4114 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Tan, A. T. et al. Use of expression profiles of HBV-DNA built-in into genomes of hepatocellular carcinoma cells to pick T Cells for immunotherapy. Gastroenterology 156, 1862–1876 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Frey, E. A. et al. Soluble CD14 participates within the response of cells to lipopolysaccharide. J. Exp. Med. 176, 1665–1671 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Komai-Koma, M., Gilchrist, D. S. & Xu, D. Direct recognition of LPS by human however not murine CD8+ T cells by way of TLR4 advanced. Eur. J. Immunol. 39, 1564–1572 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Yoshimura, A. et al. Leading edge: recognition of Gram-positive bacterial cell wall elements by the innate immune system happens by way of Toll-like receptor 2. J. Immunol. 163, 1–5 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Zanoni, I. & Granucci, F. Function of CD14 in host safety in opposition to infections and in metabolism regulation. Entrance. Cell Infect. Microbiol. 3, 32 (2013).

    Article 

    Google Scholar
     

  • Sakai, N. et al. Interleukin-33 is hepatoprotective throughout liver ischemia/reperfusion in mice. Hepatology 56, 1468–1478 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Taub, R. Hepatoprotection by way of the IL-6/Stat3 pathway. J. Clin. Make investments. 112, 978–980 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Taub, D. D., Anver, M., Oppenheim, J. J., Longo, D. L. & Murphy, W. J. T lymphocyte recruitment by interleukin-8 (IL-8). IL-8-induced degranulation of neutrophils releases potent chemoattractants for human T lymphocytes each in vitro and in vivo. J. Clin. Make investments. 97, 1931–1941 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Gehring, A. J. et al. Licensing virus-specific T cells to secrete the neutrophil attracting chemokine CXCL-8 throughout hepatitis B virus an infection. PLoS ONE 6, e23330 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Foussat, A. et al. Manufacturing of stromal cell-derived issue 1 by mesothelial cells and results of this chemokine on peritoneal B lymphocytes. Eur. J. Immunol. 31, 350–359 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Albillos, A. et al. Elevated lipopolysaccharide binding protein in cirrhotic sufferers with marked immune and hemodynamic derangement. Hepatology 37, 208–217 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Sierro, F. et al. A liver capsular community of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal micro organism by neutrophil recruitment. Immunity 47, 374–388 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Motwani, M. P. et al. Professional-resolving mediators promote decision in a human pores and skin mannequin of UV-killed Escherichia coli-driven acute irritation. JCI Perception 3, e94463 (2018).

    Article 

    Google Scholar
     

  • Nowarski, R., Jackson, R. & Flavell, R. A. The stromal intervention: regulation of immunity and irritation on the epithelial-mesenchymal barrier. Cell 168, 362–375 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Croft, A. P. et al. Distinct fibroblast subsets drive irritation and injury in arthritis. Nature 570, 246–251 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bonnardel, J. et al. Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell id on monocytes colonizing the liver macrophage area of interest. Immunity 51, 638–654 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Zanin-Zhorov, A. et al. Leading edge: T cells reply to lipopolysaccharide innately by way of TLR4 signaling. J. Immunol. 179, 41–44 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Seki, E. & Brenner, D. A. Toll-like receptors and adaptor molecules in liver illness: replace. Hepatology 48, 322–335 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kucykowicz, S. et al. Isolation of human intrahepatic leukocytes for phenotypic and purposeful characterization by movement cytometry. STAR Protoc. 3, 101356 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cossarizza, A. et al. Tips for using movement cytometry and cell sorting in immunological research (third version). Eur. J. Immunol. 51, 2708–3145 (2021).

  • Singh, H. D. et al. TRAIL regulatory receptors constrain human hepatic stellate cell apoptosis. Sci Rep. 7, 5514 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Daubeuf, S., Puaux, A. L., Joly, E. & Hudrisier, D. A easy trogocytosis-based technique to detect, quantify, characterize and purify antigen-specific stay lymphocytes by movement cytometry, by way of their seize of membrane fragments from antigen-presenting cells. Nat. Protoc. 1, 2536–2542 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation Nat. Strategies 9, 676–682 (2012).

  • Schwabenland, M. et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity 54, 1594–1610 (2021).

    Article 
    CAS 

    Google Scholar
     

  • McAdam, S. et al. Cross-clade recognition of p55 by cytotoxic T lymphocytes in HIV-1 an infection. Aids 12, 571–579 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Schmittgen, T. D. & Livak, Okay. J. Analyzing real-time PCR knowledge by the comparative CT technique. Nat. Protoc. 3, 1101–1108 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Picelli, S. et al. Full-length RNA-seq from single cells utilizing Good-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Popescu, D. M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic knowledge. Cell Syst. 8, 281–291 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Korsunsky, I. et al. Quick, delicate and correct integration of single-cell knowledge with Concord. Nat. Strategies 16, 1289–1296 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pavesi, A. et al. A 3D microfluidic mannequin for preclinical analysis of TCR-engineered T cells in opposition to stable tumors. JCI Perception 2, e89762 (2017).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular