Ray-Soni, A., Bellecourt, M. & Landick, R. Mechanisms of bacterial transcription termination. Annu. Rev. Biochem. 85, 319–347 (2016).
Mitra, P., Ghosh, G., Hafeezunnisa, M. & Sen, R. Rho protein: roles and mechanisms. Annu. Rev. Microbiol. 71, 687–709 (2017).
Roberts, J. Mechanisms of bacterial transcription termination. J. Mol. Biol. 431, 4030–4039 (2019).
Sunday, N., Svetlov, D. & Artsimovitch, I. in RNA Polymerases as Molecular Motors 2nd edn (eds Landick, R., Wang, J. & Strick, T) 100–131 (RSC Publishing, 2021).
Roberts, J. Termination issue for RNA synthesis. Nature 224, 1168–1174 (1969).
Bektesh, S. & Richardson, J. A ρ-recognition website on phage λ cro-gene mRNA. Nature 283, 102–104 (1980).
Brennan, C., Dombroski, A. & Platt, T. Transcription termination issue Rho is an RNA–DNA helicase. Cell 48, 945–952 (1987).
Dombroski, A. J. & Platt, T. Construction of Rho issue: an RNA-binding area and a separate area with sturdy similarity to confirmed ATP-binding domains. Proc. Natl Acad. Sci. USA 85, 2538–2542 (1988).
Alifano, P., Rivellini, F., Limauro, D., Bruni, C. & Carlomagno, M. A consensus motif widespread to all Rho-dependent prokaryotic transcription terminators. Cell 64, 553–563 (1991).
Jin, D. J., Burgess, R., Richardson, J. & Gross, C. Termination effectivity at rho-dependent terminators relies on kinetic coupling between RNA polymerase and Rho. Proc. Natl Acad. Sci. USA 89, 1453–1457 (1992).
Sullivan, S. L. & Gottesman, M. E. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68, 989–994 (1992).
Seifried, S., Easton, J. & von Hippel, P. ATPase exercise of transcription-termination issue rho. Proc. Natl Acad. Sci. USA 89, 10454–10458 (1992).
Geiselmann, J., Wang, Y., Seifried, S. & von Hippel, P. A bodily mannequin for the translocation and helicase actions of Escherichia coli transcription termination protein Rho. Proc. Natl Acad. Sci. USA 90, 7754–7758 (1993).
Steinmetz, E. & Platt, T. Proof supporting a tethered monitoring mannequin for helicase exercise of Escherichia coli Rho issue. Proc. Natl Acad. Sci. USA 91, 1401–1405 (1993).
Bogden, C., Fass, D., Bergman, N., Nichols, M. & Berger, J. The structural foundation for terminator recognition by the Rho transcription termination issue. Mol. Cell 3, 487–493 (1999).
Skordalakes, E. & Berger, J. Construction of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 114, 135–146 (2003).
Skordalakes, E. & Berger, J. Structural insights into RNA-dependent ring closure and ATPase activation by the Rho termination issue. Cell 127, 553–564 (2006).
Park, J. & Roberts, J. Function of DNA bubble rewinding in enzymatic transcription termination. Proc. Natl Acad. Sci. USA 103, 4870–4875 (2006).
Epshtein, V., Dutta, D., Wade, J. & Nudler, E. An allosteric mechanism of Rho-dependent transcription termination. Nature 463, 245–249 (2010).
Koslover, D., Fazal, F., Mooney, R., Landick, R. & Block, S. Binding and translocation of termination issue rho studied on the single-molecule degree. J. Mol. Biol. 423, 664–676 (2012).
Lawson, M. R., Dyer, Okay. & Berger, J. M. Ligand-induced and small-molecule management of substrate loading in a hexameric helicase. Proc. Natl Acad. Sci. USA 113, 13714–13719 (2016).
Thomsen, N., Lawson, M., Witkowsky, L., Qu, S. & Berger, J. Molecular mechanisms of substrate-controlled ring dynamics and substepping in a nucleic acid-dependent hexameric motor. Proc. Natl Acad. Sci. USA 113, e7691–e7700 (2016).
Lawson, M. et al. Mechanism for the regulated management of bacterial transcription termination by a common adaptor protein. Mol. Cell 71, 911–922 (2018).
Adhya, S. & Gottesman, M. Management of transcription termination. Annu. Rev. Biochem. 47, 967–996 (1978).
Richardson, J. P. Stopping the synthesis of unused transcripts by Rho issue. Cell 64, 1047–1049 (1991).
Burmann, B. et al. A NusE:NusG advanced hyperlinks transcription and translation. Science 328, 501–504 (2010).
Saxena, S. et al. Escherichia coli transcription issue NusG binds to 70S ribosomes. Mol. Microbiol. 108, 495–504 (2018).
Washburn, R. et al. Escherichia coli NusG hyperlinks the lead ribosome with the transcription elongation advanced. iScience 23, 101352 (2020).
Webster, M. & Weixlbaumer, A. Macromolecular assemblies supporting transcription–translation coupling. Transcription 12, 103–125 (2021).
Stated, N. et al. Steps towards translocation-independent RNA polymerase inactivation by terminator ATPase Rho. Science 371, eabd1673 (2021).
Hao, Z. et al. Pre-termination transcription advanced: construction and performance. Mol. Cell 81, 281–292 (2021).
Hao, Z., Svetlov, V. & Nudler, E. Rho-dependent transcription termination: a revisionist view. Transcription 12, 171–181 (2021).
Vassylyev, D., Vassylyeva, M., Perederina, A., Tahirov, T. & Artsimovitch, I. Structural foundation for transcription elongation by bacterial RNA polymerase. Nature 448, 157–162 (2007).
Webster, M. et al. Structural foundation of transcription–translation coupling and collision in micro organism. Science 369, 1355–1359 (2020).
Wang, C. et al. Structural foundation of transcription–translation coupling. Science 369, 1359–1365 (2020).
Kang, J. et al. Structural foundation for transcript elongation management by NusG household common regulators. Cell 173, 1650–1662 (2018).
Boyer, P. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).
Murayama, Y. et al. Structural foundation of the transcription termination issue Rho engagement with transcribing RNA polymerase. Preprint at bioRxiv https://doi.org/10.1101/2022.09.02.506315 (2022).
Guo, X. et al. Structural foundation for NusA stabilized transcriptional pausing. Mol. Cell 69, 816–827 (2018).
Svetlov, V. & Artsimovitch, I. Purification of bacterial RNA polymerase: instruments and protocols. Mol. Cell 26, 117–129 (2015).
Molodtsov, V. et al. Allosteric effector ppGpp potentiates the inhibition of transcript initiation by DksA. Mol. Cell 69, 828–839 (2018).
Artsimovitch, I. & Landick, R. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct courses of indicators. Proc. Natl Acad. Sci. USA 97, 7090–7709 (2000).
Sambrook, J., Fritsch, E. and Maniatis, T. Molecular Cloning: A Laboratory Guide (Chilly Spring Harbor Laboratory, 1989).
Suloway, C. et al. Automated molecular microscopy: the brand new Leginon system. J. Struct. Biol. 151, 41–60 (2005).
Zheng, S. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–333 (2017).
Rohou, A. & Grigorieff, N. CTFFIND4: quick and correct defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
Zivanov, J. et al. New instruments for automated high-resolution cryo-EM construction willpower in RELION-3. eLife 7, e42166 (2018).
Pettersen, E. et al. UCSF chimera—a visualization system for exploratory analysis and evaluation. J. Comp. Chem. 25, 1605–1612 (2004).
Emsley, P., Lohkamp, B., Scott, W. & Cowtan, Okay. Options and growth of Coot. Acta Cryst. D 66, 486–501 (2010).
Afonine, T., Headd, J., Terwilliger, T. and Adams, P. New device: phenix.real_space_refine (Computatational Crystallography Newslettetter, 2013); https://phenix-online.org/phenixwebsite_static/mainsite/recordsdata/e-newsletter/CCN_2013_07.pdf.
Mastronarde, D. Superior information acquisition from electron microscopes with SerialEM. Microsc. Microanal. 24, 864–865 (2018).