Wednesday, February 8, 2023
HomeNatureStructural foundation of Rho-dependent transcription termination

Structural foundation of Rho-dependent transcription termination


  • Ray-Soni, A., Bellecourt, M. & Landick, R. Mechanisms of bacterial transcription termination. Annu. Rev. Biochem. 85, 319–347 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mitra, P., Ghosh, G., Hafeezunnisa, M. & Sen, R. Rho protein: roles and mechanisms. Annu. Rev. Microbiol. 71, 687–709 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Roberts, J. Mechanisms of bacterial transcription termination. J. Mol. Biol. 431, 4030–4039 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sunday, N., Svetlov, D. & Artsimovitch, I. in RNA Polymerases as Molecular Motors 2nd edn (eds Landick, R., Wang, J. & Strick, T) 100–131 (RSC Publishing, 2021).

  • Roberts, J. Termination issue for RNA synthesis. Nature 224, 1168–1174 (1969).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bektesh, S. & Richardson, J. A ρ-recognition website on phage λ cro-gene mRNA. Nature 283, 102–104 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brennan, C., Dombroski, A. & Platt, T. Transcription termination issue Rho is an RNA–DNA helicase. Cell 48, 945–952 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Dombroski, A. J. & Platt, T. Construction of Rho issue: an RNA-binding area and a separate area with sturdy similarity to confirmed ATP-binding domains. Proc. Natl Acad. Sci. USA 85, 2538–2542 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Alifano, P., Rivellini, F., Limauro, D., Bruni, C. & Carlomagno, M. A consensus motif widespread to all Rho-dependent prokaryotic transcription terminators. Cell 64, 553–563 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Jin, D. J., Burgess, R., Richardson, J. & Gross, C. Termination effectivity at rho-dependent terminators relies on kinetic coupling between RNA polymerase and Rho. Proc. Natl Acad. Sci. USA 89, 1453–1457 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sullivan, S. L. & Gottesman, M. E. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68, 989–994 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Seifried, S., Easton, J. & von Hippel, P. ATPase exercise of transcription-termination issue rho. Proc. Natl Acad. Sci. USA 89, 10454–10458 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Geiselmann, J., Wang, Y., Seifried, S. & von Hippel, P. A bodily mannequin for the translocation and helicase actions of Escherichia coli transcription termination protein Rho. Proc. Natl Acad. Sci. USA 90, 7754–7758 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Steinmetz, E. & Platt, T. Proof supporting a tethered monitoring mannequin for helicase exercise of Escherichia coli Rho issue. Proc. Natl Acad. Sci. USA 91, 1401–1405 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Bogden, C., Fass, D., Bergman, N., Nichols, M. & Berger, J. The structural foundation for terminator recognition by the Rho transcription termination issue. Mol. Cell 3, 487–493 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Skordalakes, E. & Berger, J. Construction of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 114, 135–146 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Skordalakes, E. & Berger, J. Structural insights into RNA-dependent ring closure and ATPase activation by the Rho termination issue. Cell 127, 553–564 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Park, J. & Roberts, J. Function of DNA bubble rewinding in enzymatic transcription termination. Proc. Natl Acad. Sci. USA 103, 4870–4875 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Epshtein, V., Dutta, D., Wade, J. & Nudler, E. An allosteric mechanism of Rho-dependent transcription termination. Nature 463, 245–249 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koslover, D., Fazal, F., Mooney, R., Landick, R. & Block, S. Binding and translocation of termination issue rho studied on the single-molecule degree. J. Mol. Biol. 423, 664–676 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lawson, M. R., Dyer, Okay. & Berger, J. M. Ligand-induced and small-molecule management of substrate loading in a hexameric helicase. Proc. Natl Acad. Sci. USA 113, 13714–13719 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thomsen, N., Lawson, M., Witkowsky, L., Qu, S. & Berger, J. Molecular mechanisms of substrate-controlled ring dynamics and substepping in a nucleic acid-dependent hexameric motor. Proc. Natl Acad. Sci. USA 113, e7691–e7700 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lawson, M. et al. Mechanism for the regulated management of bacterial transcription termination by a common adaptor protein. Mol. Cell 71, 911–922 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Adhya, S. & Gottesman, M. Management of transcription termination. Annu. Rev. Biochem. 47, 967–996 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Richardson, J. P. Stopping the synthesis of unused transcripts by Rho issue. Cell 64, 1047–1049 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Burmann, B. et al. A NusE:NusG advanced hyperlinks transcription and translation. Science 328, 501–504 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Saxena, S. et al. Escherichia coli transcription issue NusG binds to 70S ribosomes. Mol. Microbiol. 108, 495–504 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Washburn, R. et al. Escherichia coli NusG hyperlinks the lead ribosome with the transcription elongation advanced. iScience 23, 101352 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Webster, M. & Weixlbaumer, A. Macromolecular assemblies supporting transcription–translation coupling. Transcription 12, 103–125 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stated, N. et al. Steps towards translocation-independent RNA polymerase inactivation by terminator ATPase Rho. Science 371, eabd1673 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hao, Z. et al. Pre-termination transcription advanced: construction and performance. Mol. Cell 81, 281–292 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hao, Z., Svetlov, V. & Nudler, E. Rho-dependent transcription termination: a revisionist view. Transcription 12, 171–181 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vassylyev, D., Vassylyeva, M., Perederina, A., Tahirov, T. & Artsimovitch, I. Structural foundation for transcription elongation by bacterial RNA polymerase. Nature 448, 157–162 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Webster, M. et al. Structural foundation of transcription–translation coupling and collision in micro organism. Science 369, 1355–1359 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Structural foundation of transcription–translation coupling. Science 369, 1359–1365 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kang, J. et al. Structural foundation for transcript elongation management by NusG household common regulators. Cell 173, 1650–1662 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Boyer, P. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Murayama, Y. et al. Structural foundation of the transcription termination issue Rho engagement with transcribing RNA polymerase. Preprint at bioRxiv https://doi.org/10.1101/2022.09.02.506315 (2022).

  • Guo, X. et al. Structural foundation for NusA stabilized transcriptional pausing. Mol. Cell 69, 816–827 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Svetlov, V. & Artsimovitch, I. Purification of bacterial RNA polymerase: instruments and protocols. Mol. Cell 26, 117–129 (2015).

  • Molodtsov, V. et al. Allosteric effector ppGpp potentiates the inhibition of transcript initiation by DksA. Mol. Cell 69, 828–839 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Artsimovitch, I. & Landick, R. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct courses of indicators. Proc. Natl Acad. Sci. USA 97, 7090–7709 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sambrook, J., Fritsch, E. and Maniatis, T. Molecular Cloning: A Laboratory Guide (Chilly Spring Harbor Laboratory, 1989).

  • Suloway, C. et al. Automated molecular microscopy: the brand new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, S. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–333 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: quick and correct defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 

    Google Scholar
     

  • Zivanov, J. et al. New instruments for automated high-resolution cryo-EM construction willpower in RELION-3. eLife 7, e42166 (2018).

    Article 

    Google Scholar
     

  • Pettersen, E. et al. UCSF chimera—a visualization system for exploratory analysis and evaluation. J. Comp. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. & Cowtan, Okay. Options and growth of Coot. Acta Cryst. D 66, 486–501 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Afonine, T., Headd, J., Terwilliger, T. and Adams, P. New device: phenix.real_space_refine (Computatational Crystallography Newslettetter, 2013); https://phenix-online.org/phenixwebsite_static/mainsite/recordsdata/e-newsletter/CCN_2013_07.pdf.

  • Mastronarde, D. Superior information acquisition from electron microscopes with SerialEM. Microsc. Microanal. 24, 864–865 (2018).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular