Wednesday, February 8, 2023
HomeNatureStellar preliminary mass perform varies with metallicity and time

Stellar preliminary mass perform varies with metallicity and time


  • Kroupa, P. On the variation of the preliminary mass perform. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Kroupa, P. The preliminary mass perform of stars: proof for uniformity in variable techniques. Science 295, 82–91 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar preliminary mass perform. Publ. Astron. Soc. Pacif. 115, 763–795 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Bastian, N., Covey, Okay. R. & Meyer, M. R. A common stellar preliminary mass perform? A crucial have a look at variations. Annu. Rev. Astron. Astrophys. 48, 339–389 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Adams, F. C. A concept of the preliminary mass perform for star formation in molecular clouds. Astrophys. J. 464, 256 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Hopkins, P. F. The stellar preliminary mass perform, core mass perform and the last-crossing distribution. Mon. Not. R. Astron. Soc. 423, 2037–2044 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Hennebelle, P. & Chabrier, G. Analytical concept for the preliminary mass perform. III. Time dependence and star formation price. Astrophys. J. 770, 150 (2013).

    Article 
    ADS 

    Google Scholar
     

  • van Dokkum, P. G. & Conroy, C. A considerable inhabitants of low-mass stars in luminous elliptical galaxies. Nature 468, 940–942 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Treu, T. et al. The preliminary mass perform of early-type galaxies. Astrophys. J. 709, 1195–1202 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Cappellari, M. et al. Systematic variation of the stellar preliminary mass perform in early-type galaxies. Nature 484, 485–488 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martín-Navarro, I. et al. IMF–metallicity: a decent native relation revealed by the CALIFA survey. Astrophys. J. Let. 806, L31 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Z.-Y. et al. Stellar populations dominated by large stars in dusty starburst galaxies throughout cosmic time. Nature 558, 260–263 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bartko, H. et al. A particularly top-heavy preliminary mass perform within the Galactic heart stellar disks. Astrophys. J. 708, 834–840 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smith, R. J. Proof for preliminary mass perform variation in large early-type galaxies. Annu. Rev. Astron. Astrophys. 58, 577–615 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Conroy, C. Modeling the panchromatic spectral power distributions of galaxies. Annu. Rev. Astron. Astrophys. 51, 393–455 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Offner, S. S. R. et al. The origin and universality of the stellar preliminary mass perform. In Protostars and Planets VI (eds Reipurth, B. et al.) 53 (Univ. Arizona Press, 2014).

  • Kroupa, P. et al. The distribution of low-mass stars within the Galactic disc. Mon. Not. R. Astron. Soc. 262, 545–587 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Kroupa, P. & Tout, C. A. The theoretical mass–magnitude relation of low mass stars and its metallicity dependence. Mon. Not. R. Astron. Soc. 287, 402–414 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, J. et al. Stellar parameterization of LAMOST M dwarf stars. Astrophys. J. Suppl. Ser. 253, 45 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, C. et al. Mapping the Milky Approach with LAMOST I: methodology and overview. Res. Astron. Astrophys. 17, 096 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, C. Smoking gun of the dynamical processing of solar-type discipline binary stars. Mon. Not. R. Astron. Soc. 490, 550–565 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Moe, M. et al. The shut binary fraction of solar-type stars is strongly anticorrelated with metallicity. Astrophys. J. 875, 61 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Salpeter, E. E. The luminosity perform and stellar evolution. Astrophys. J. 121, 161 (1955).

  • Yan, Z. et al. Chemical evolution of ultra-faint dwarf galaxies within the self-consistently calculated built-in galactic IMF concept. Astron. Astrophys. 637, A68 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reylé, C. & Robin, A. C. Early galaxy evolution from deep extensive discipline star counts. II. First estimate of the thick disc mass perform. Astron. Astrophys. 373, 886–894 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Geha, M. et al. The stellar preliminary mass perform of ultra-faint dwarf galaxies: proof for IMF variations with galactic setting. Astrophys. J. 771, 29 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kordopatis, G. et al. The wealthy are completely different: proof from the RAVE survey for stellar radial migration. Mon. Not. R. Astron. Soc. 447, 3526–3535 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jeřábková, T. Affect of metallicity and star formation price on the time-dependent, galaxy-wide stellar preliminary mass perform. Astron. Astrophys. 620, A39 (2018).

    Article 

    Google Scholar
     

  • Ting, Y.-S. & Rix, H.-W. The vertical movement historical past of disk stars all through the Galaxy. Astrophys. J. 878, 21 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Larson, R. B. Early star formation and the evolution of the stellar preliminary mass perform in galaxies. Mon. Not. R. Astron. Soc. 301, 569–581 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Padoan, P. & Nordlund, Å.The stellar preliminary mass perform from turbulent fragmentation. Astrophys. J. 576, 870–879 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Papadopoulos, P. P. et al. Excessive cosmic ray dominated areas: a brand new paradigm for prime star formation density occasions within the Universe. Mon. Not. R. Astron. Soc. 414, 1705–1714 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Z.-Y. et al. Gone with the warmth: a elementary constraint on the imaging of mud and molecular fuel within the early Universe. Royal Society Open Science 3, 160025 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, G. et al. LAMOST spectral survey — an outline. Res. Astron. Astrophys. 12, 723–734 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Deng, L.-C. et al. LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) — the survey’s science plan. Res. Astron. Astrophys. 12, 735–754 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Majewski, S. R. et al. The Apache Level Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 154, 94 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Jönsson, H. et al. APOGEE knowledge and spectral evaluation from SDSS Information Launch 16: seven years of observations together with first outcomes from APOGEE-South. Astron. J. 160, 120 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, B. et al. Deriving the stellar labels of LAMOST spectra with the Stellar LAbel Machine (SLAM). Astrophys. J. Suppl. Ser. 246, 9 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yi, Z. et al. M dwarf catalog of the LAMOST pilot survey. Astrophys. J. 147, 33 (2014).


    Google Scholar
     

  • Gaia Collaboration. et al. Gaia Information Launch 2: abstract of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Article 

    Google Scholar
     

  • Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astrophys. J. 131, 1163–1183 (2006).


    Google Scholar
     

  • Inexperienced, G. M. et al. A 3D mud map primarily based on Gaia, Pan-STARRS 1, and 2MASS. Astrophys. J. 887, 93 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, S. & Chen, X. The optical to mid-infrared extinction legislation primarily based on the APOGEE, Gaia DR2, Pan-STARRS1, SDSS, APASS, 2MASS, and WISE Surveys. Astrophys. J. 877, 116 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bailer-Jones, C. A. L. et al. Estimating distance from parallaxes. IV. Distances to 1.33 billion stars in Gaia Information Launch 2. Astron. J. 156, 58 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Enhancing PARSEC fashions for very low mass stars. Mon. Not. R. Astron. Soc. 444, 2525–2543 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In KDD ’16: Proc. twenty second ACM SIGKDD Int. Conf. Data Discovery And Information Mining, (eds Krishnapuram, B. et al.) 785–794 (ACM, 2016).

  • Mann, A. W. et al. Tips on how to constrain your M dwarf. II. The mass–luminosity–metallicity relation from 0.075 to 0.70 photo voltaic lots. Astrophys. J. 871, 63 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miller, G. E. & Scalo, J. M. The preliminary mass perform and stellar birthrate within the photo voltaic neighborhood. Astrophys. J. Suppl. Ser. 41, 513–547 (1979).

    Article 

    Google Scholar
     

  • El-Badry, Okay., Weisz, D. R. & Quataert, E. The statistical problem of constraining the low-mass IMF in Native Group dwarf galaxies. Mon. Not. R. Astron. Soc. 468, 319–332 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Xu, Y. et al. Mapping the Milky Approach with LAMOST—II. The stellar halo. Mon. Not. R. Astron. Soc. 473, 1244–1257 (2018).

  • Wang, H.-F., Liu, C., Xu, Y., Wan, J.-C. & Deng, L. Mapping the Milky Approach with LAMOST—III. Difficult spatial construction within the outer disc. Mon. Not. R. Astron. Soc. 478, 3367–3379 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Jurić, M. et al. The Milky Approach Tomography with SDSS. I. Stellar quantity density distribution. Astrophys. J. 673, 864–914 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python utilizing PyMC3. PeerJ Comput. Sci. 2, e55 (2016).

  • Sharma, S. et al. Galaxia: a code to generate an artificial survey of the Milky Approach. Astrophys. J. 730, 3 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Dotter, A. et al. The Dartmouth Stellar Evolution Database. Astrophys. J. Suppl. Ser. 178, 89–101 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bovy, J. et al. galpy: a Python library for galactic dynamics. Astrophys. J. Suppl. Ser. 216, 29 (2015).

    Article 
    ADS 

    Google Scholar
     

  • The GRAVITY Collaboration. A geometrical distance measurement to the Galactic heart black gap with 0.3% uncertainty. Astron. Astrophys. 625, L10 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bovy, J. et al. The Milky Approach’s circular-velocity curve between 4 and 14 kpc from APOGEE knowledge. Astrophys. J. 759, 131 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Schönrich, R. et al. Native kinematics and the native normal of relaxation. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn (Princeton Univ. Press, 2008).

  • Binney, J. Actions for axisymmetric potentials. Mon. Not. R. Astron. Soc. 426, 1324–1327 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Sanders, J. L. & Binney, J. A overview of motion estimation strategies for galactic dynamics. Mon. Not. R. Astron. Soc. 457, 2107–2121 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jenkins, A. & Binney, J. Spiral heating of galactic discs. Mon. Not. R. Astron. Soc. 245, 305–317 (1990).

    ADS 

    Google Scholar
     

  • Wu, Y. et al. Mass and age of pink big department stars noticed with LAMOST and Kepler. Mon. Not. R. Astron. Soc. 475, 3633–3643 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Delfosse, X. et al. M dwarfs binaries: outcomes from correct radial velocities and excessive angular decision observations. In Spectroscopically and Spatially Resolving the Parts of the Shut Binary Stars (eds Hilditch R. W. et al.) 166–174 (Astronomical Society of the Pacific, 2004).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular