Kroupa, P. On the variation of the preliminary mass perform. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).
Kroupa, P. The preliminary mass perform of stars: proof for uniformity in variable techniques. Science 295, 82–91 (2002).
Chabrier, G. Galactic stellar and substellar preliminary mass perform. Publ. Astron. Soc. Pacif. 115, 763–795 (2003).
Bastian, N., Covey, Okay. R. & Meyer, M. R. A common stellar preliminary mass perform? A crucial have a look at variations. Annu. Rev. Astron. Astrophys. 48, 339–389 (2010).
Adams, F. C. A concept of the preliminary mass perform for star formation in molecular clouds. Astrophys. J. 464, 256 (1996).
Hopkins, P. F. The stellar preliminary mass perform, core mass perform and the last-crossing distribution. Mon. Not. R. Astron. Soc. 423, 2037–2044 (2012).
Hennebelle, P. & Chabrier, G. Analytical concept for the preliminary mass perform. III. Time dependence and star formation price. Astrophys. J. 770, 150 (2013).
van Dokkum, P. G. & Conroy, C. A considerable inhabitants of low-mass stars in luminous elliptical galaxies. Nature 468, 940–942 (2010).
Treu, T. et al. The preliminary mass perform of early-type galaxies. Astrophys. J. 709, 1195–1202 (2010).
Cappellari, M. et al. Systematic variation of the stellar preliminary mass perform in early-type galaxies. Nature 484, 485–488 (2012).
Martín-Navarro, I. et al. IMF–metallicity: a decent native relation revealed by the CALIFA survey. Astrophys. J. Let. 806, L31 (2015).
Zhang, Z.-Y. et al. Stellar populations dominated by large stars in dusty starburst galaxies throughout cosmic time. Nature 558, 260–263 (2018).
Bartko, H. et al. A particularly top-heavy preliminary mass perform within the Galactic heart stellar disks. Astrophys. J. 708, 834–840 (2010).
Smith, R. J. Proof for preliminary mass perform variation in large early-type galaxies. Annu. Rev. Astron. Astrophys. 58, 577–615 (2020).
Conroy, C. Modeling the panchromatic spectral power distributions of galaxies. Annu. Rev. Astron. Astrophys. 51, 393–455 (2013).
Offner, S. S. R. et al. The origin and universality of the stellar preliminary mass perform. In Protostars and Planets VI (eds Reipurth, B. et al.) 53 (Univ. Arizona Press, 2014).
Kroupa, P. et al. The distribution of low-mass stars within the Galactic disc. Mon. Not. R. Astron. Soc. 262, 545–587 (1993).
Kroupa, P. & Tout, C. A. The theoretical mass–magnitude relation of low mass stars and its metallicity dependence. Mon. Not. R. Astron. Soc. 287, 402–414 (1997).
Li, J. et al. Stellar parameterization of LAMOST M dwarf stars. Astrophys. J. Suppl. Ser. 253, 45 (2021).
Liu, C. et al. Mapping the Milky Approach with LAMOST I: methodology and overview. Res. Astron. Astrophys. 17, 096 (2017).
Liu, C. Smoking gun of the dynamical processing of solar-type discipline binary stars. Mon. Not. R. Astron. Soc. 490, 550–565 (2019).
Moe, M. et al. The shut binary fraction of solar-type stars is strongly anticorrelated with metallicity. Astrophys. J. 875, 61 (2019).
Salpeter, E. E. The luminosity perform and stellar evolution. Astrophys. J. 121, 161 (1955).
Yan, Z. et al. Chemical evolution of ultra-faint dwarf galaxies within the self-consistently calculated built-in galactic IMF concept. Astron. Astrophys. 637, A68 (2020).
Reylé, C. & Robin, A. C. Early galaxy evolution from deep extensive discipline star counts. II. First estimate of the thick disc mass perform. Astron. Astrophys. 373, 886–894 (2001).
Geha, M. et al. The stellar preliminary mass perform of ultra-faint dwarf galaxies: proof for IMF variations with galactic setting. Astrophys. J. 771, 29 (2013).
Kordopatis, G. et al. The wealthy are completely different: proof from the RAVE survey for stellar radial migration. Mon. Not. R. Astron. Soc. 447, 3526–3535 (2015).
Jeřábková, T. Affect of metallicity and star formation price on the time-dependent, galaxy-wide stellar preliminary mass perform. Astron. Astrophys. 620, A39 (2018).
Ting, Y.-S. & Rix, H.-W. The vertical movement historical past of disk stars all through the Galaxy. Astrophys. J. 878, 21 (2019).
Larson, R. B. Early star formation and the evolution of the stellar preliminary mass perform in galaxies. Mon. Not. R. Astron. Soc. 301, 569–581 (1998).
Padoan, P. & Nordlund, Å.The stellar preliminary mass perform from turbulent fragmentation. Astrophys. J. 576, 870–879 (2002).
Papadopoulos, P. P. et al. Excessive cosmic ray dominated areas: a brand new paradigm for prime star formation density occasions within the Universe. Mon. Not. R. Astron. Soc. 414, 1705–1714 (2011).
Zhang, Z.-Y. et al. Gone with the warmth: a elementary constraint on the imaging of mud and molecular fuel within the early Universe. Royal Society Open Science 3, 160025 (2016).
Zhao, G. et al. LAMOST spectral survey — an outline. Res. Astron. Astrophys. 12, 723–734 (2012).
Deng, L.-C. et al. LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) — the survey’s science plan. Res. Astron. Astrophys. 12, 735–754 (2012).
Majewski, S. R. et al. The Apache Level Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 154, 94 (2017).
Jönsson, H. et al. APOGEE knowledge and spectral evaluation from SDSS Information Launch 16: seven years of observations together with first outcomes from APOGEE-South. Astron. J. 160, 120 (2020).
Zhang, B. et al. Deriving the stellar labels of LAMOST spectra with the Stellar LAbel Machine (SLAM). Astrophys. J. Suppl. Ser. 246, 9 (2020).
Yi, Z. et al. M dwarf catalog of the LAMOST pilot survey. Astrophys. J. 147, 33 (2014).
Gaia Collaboration. et al. Gaia Information Launch 2: abstract of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astrophys. J. 131, 1163–1183 (2006).
Inexperienced, G. M. et al. A 3D mud map primarily based on Gaia, Pan-STARRS 1, and 2MASS. Astrophys. J. 887, 93 (2019).
Wang, S. & Chen, X. The optical to mid-infrared extinction legislation primarily based on the APOGEE, Gaia DR2, Pan-STARRS1, SDSS, APASS, 2MASS, and WISE Surveys. Astrophys. J. 877, 116 (2019).
Bailer-Jones, C. A. L. et al. Estimating distance from parallaxes. IV. Distances to 1.33 billion stars in Gaia Information Launch 2. Astron. J. 156, 58 (2018).
Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).
Chen, Y. et al. Enhancing PARSEC fashions for very low mass stars. Mon. Not. R. Astron. Soc. 444, 2525–2543 (2014).
Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In KDD ’16: Proc. twenty second ACM SIGKDD Int. Conf. Data Discovery And Information Mining, (eds Krishnapuram, B. et al.) 785–794 (ACM, 2016).
Mann, A. W. et al. Tips on how to constrain your M dwarf. II. The mass–luminosity–metallicity relation from 0.075 to 0.70 photo voltaic lots. Astrophys. J. 871, 63 (2019).
Miller, G. E. & Scalo, J. M. The preliminary mass perform and stellar birthrate within the photo voltaic neighborhood. Astrophys. J. Suppl. Ser. 41, 513–547 (1979).
El-Badry, Okay., Weisz, D. R. & Quataert, E. The statistical problem of constraining the low-mass IMF in Native Group dwarf galaxies. Mon. Not. R. Astron. Soc. 468, 319–332 (2017).
Xu, Y. et al. Mapping the Milky Approach with LAMOST—II. The stellar halo. Mon. Not. R. Astron. Soc. 473, 1244–1257 (2018).
Wang, H.-F., Liu, C., Xu, Y., Wan, J.-C. & Deng, L. Mapping the Milky Approach with LAMOST—III. Difficult spatial construction within the outer disc. Mon. Not. R. Astron. Soc. 478, 3367–3379 (2018).
Jurić, M. et al. The Milky Approach Tomography with SDSS. I. Stellar quantity density distribution. Astrophys. J. 673, 864–914 (2008).
Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python utilizing PyMC3. PeerJ Comput. Sci. 2, e55 (2016).
Sharma, S. et al. Galaxia: a code to generate an artificial survey of the Milky Approach. Astrophys. J. 730, 3 (2011).
Dotter, A. et al. The Dartmouth Stellar Evolution Database. Astrophys. J. Suppl. Ser. 178, 89–101 (2008).
Bovy, J. et al. galpy: a Python library for galactic dynamics. Astrophys. J. Suppl. Ser. 216, 29 (2015).
The GRAVITY Collaboration. A geometrical distance measurement to the Galactic heart black gap with 0.3% uncertainty. Astron. Astrophys. 625, L10 (2019).
Bovy, J. et al. The Milky Approach’s circular-velocity curve between 4 and 14 kpc from APOGEE knowledge. Astrophys. J. 759, 131 (2012).
Schönrich, R. et al. Native kinematics and the native normal of relaxation. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).
Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn (Princeton Univ. Press, 2008).
Binney, J. Actions for axisymmetric potentials. Mon. Not. R. Astron. Soc. 426, 1324–1327 (2012).
Sanders, J. L. & Binney, J. A overview of motion estimation strategies for galactic dynamics. Mon. Not. R. Astron. Soc. 457, 2107–2121 (2016).
Jenkins, A. & Binney, J. Spiral heating of galactic discs. Mon. Not. R. Astron. Soc. 245, 305–317 (1990).
Wu, Y. et al. Mass and age of pink big department stars noticed with LAMOST and Kepler. Mon. Not. R. Astron. Soc. 475, 3633–3643 (2018).
Delfosse, X. et al. M dwarfs binaries: outcomes from correct radial velocities and excessive angular decision observations. In Spectroscopically and Spatially Resolving the Parts of the Shut Binary Stars (eds Hilditch R. W. et al.) 166–174 (Astronomical Society of the Pacific, 2004).