Sunday, February 5, 2023
HomeNatureRotational multimaterial printing of filaments with subvoxel management

Rotational multimaterial printing of filaments with subvoxel management


  • Spinks, G. M. Superior actuator supplies powered by biomimetic helical fiber topologies. Adv. Mater. 32, 1904093 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Evans, J. J. & Ridge, I. M. L. in WIT Transactions on State of the Artwork in Science and Engineering, Vol. 20 (ed. Jenkins, C. H. M.) Ch. 7, 133–169 (WIT Press, 2005).

  • Mu, J. et al. Sheath-run synthetic muscle groups. Science 365, 150–155 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, R. et al. Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science 366, 216–221 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yuan, J. et al. Form reminiscence nanocomposite fibers for untethered high-energy microengines. Science 365, 155–158 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chatterjee, Ok. & Ghosh, T. Ok. 3D printing of textiles: potential roadmap to printing with fibers. Adv. Mater. 32, 1902086 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lima, M. D. et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscle groups. Science 338, 928–932 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, P. et al. Bioinspired microfibers with embedded perfusable helical channels. Adv. Mater. 29, 1701664 (2017).

    Article 

    Google Scholar
     

  • Yu, Y. et al. Bioinspired helical microfibers from microfluidics. Adv. Mater. 29, 1605765 (2017).

    Article 

    Google Scholar
     

  • Kanik, M. et al. Pressure-programmable fiber-based synthetic muscle. Science 365, 145–150 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, M. et al. Nanomechanical structure of strained bilayer skinny movies: from design ideas to experimental fabrication. Adv. Mater. 17, 2860–2864 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Pham, J. T. et al. Extremely stretchable nanoparticle helices by way of geometric asymmetry and floor forces. Adv. Mater. 25, 6703–6708 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z. L. et al. Three-dimensional form transformations of hydrogel sheets induced by small-scale modulation of inner stresses. Nat. Commun. 4, 1586 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Moestopo, W. P., Mateos, A. J., Fuller, R. M., Greer, J. R. & Portela, C. M. Pushing and pulling on ropes: hierarchical woven supplies. Adv. Sci. 7, 2001271 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Skylar-Scott, M. A., Gunasekaran, S. & Lewis, J. A. Laser-assisted direct ink writing of planar and 3D steel architectures. Proc. Natl Acad. Sci. 113, 6137–6142 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lebel, L. L., Aissa, B., Khakani, M. A. E. & Therriault, D. Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils. Adv. Mater. 22, 592–596 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    Article 
    ADS 

    Google Scholar
     

  • van der Elst, L. et al. 3D printing in fiber-device know-how. Adv. Fiber Mater. 3, 59–75 (2021).

    Article 

    Google Scholar
     

  • Hart, Ok. R., Dunn, R. M. & Wetzel, E. D. Powerful, additively manufactured constructions fabricated with twin‐thermoplastic filaments. Adv. Eng. Mater. 22, 1901184 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Loke, G. et al. Structured multimaterial filaments for 3D printing of optoelectronics. Nat. Commun. 10, 4010 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Xu, W. et al. Evaluation of fiber-based three-dimensional printing for purposes starting from nanoscale nanoparticle alignment to macroscale patterning. ACS Appl. Nano Mater. 4, 7538–7562 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mueller, J., Raney, J. R., Shea, Ok. & Lewis, J. A. Architected lattices with excessive stiffness and toughness by way of multicore-shell 3D printing. Adv. Mater. 30, 1705001 (2018).

    Article 

    Google Scholar
     

  • Chortos, A. et al. Printing reconfigurable bundles of dielectric elastomer fibers. Adv. Funct. Mater. 31, 2010643 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Raney, J. R. et al. Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proc. Natl Acad. Sci. 115, 1198–1203 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lehman, W., Galińska-Rakoczy, A., Hatch, V., Tobacman, L. S. & Craig, R. Structural foundation for the activation of muscle contraction by troponin and tropomyosin. J. Mol. Biol. 388, 673–681 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Armon, S., Efrati, E., Kupferman, R. & Sharon, E. Geometry and mechanics within the opening of chiral seed pods. Science 333, 1726–1730 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Burgert, I. & Fratzl, P. Actuation methods in crops as prototypes for bioinspired units. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1541–1557 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reyssat, E. & Mahadevan, L. Hygromorphs: from pine cones to biomimetic bilayers. J. R. Soc. Interface 6, 951–957 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Robotic synthetic muscle groups: present progress and future views. IEEE Trans. Robotic. 35, 761–781 (2019).

    Article 

    Google Scholar
     

  • Carpi, F., Migliore, A., Serra, G. & Rossi, D. D. Helical dielectric elastomer actuators. Sensible Mater. Struct. 14, 1210–1216 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xin, X., Liu, L., Liu, Y. & Leng, J. Pixel mechanical metamaterials with programmable and reconfigurable properties. Adv. Funct. Mater. 32, 2107795 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lipton, J. I. et al. Handedness in shearing auxetics creates inflexible and compliant constructions. Science 360, 632–635 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Truby, R. L. & Lewis, J. A. Printing tender matter in three dimensions. Nature 540, 371–378 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Skylar-Scott, M. A., Mueller, J., Visser, C. W. & Lewis, J. A. Voxelated tender matter by way of multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mahadevan, L., Ryu, W. S. & Samuel, A. D. T. Fluid ‘rope trick’ investigated. Nature 392, 140–140 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yuk, H. & Zhao, X. A brand new 3D printing technique by harnessing deformation, instability, and fracture of viscoelastic inks. Adv. Mater. 30, 1704028 (2018).

    Article 

    Google Scholar
     

  • Chortos, A., Hajiesmaili, E., Morales, J., Clarke, D. R. & Lewis, J. A. 3D printing of interdigitated dielectric elastomer actuators. Adv. Funct. Mater. 30, 1907375 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Murbach, M., Gerwe, B., Dawson-Elli, N. & Tsui, L. impedance.py: a Python package deal for electrochemical impedance evaluation. J. Open Supply Softw. 5, 2349 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lasia, A. Electrochemical Impedance Spectroscopy and its Purposes (Springer, 2014).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular