Spinks, G. M. Superior actuator supplies powered by biomimetic helical fiber topologies. Adv. Mater. 32, 1904093 (2020).
Evans, J. J. & Ridge, I. M. L. in WIT Transactions on State of the Artwork in Science and Engineering, Vol. 20 (ed. Jenkins, C. H. M.) Ch. 7, 133–169 (WIT Press, 2005).
Mu, J. et al. Sheath-run synthetic muscle groups. Science 365, 150–155 (2019).
Wang, R. et al. Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science 366, 216–221 (2019).
Yuan, J. et al. Form reminiscence nanocomposite fibers for untethered high-energy microengines. Science 365, 155–158 (2019).
Chatterjee, Ok. & Ghosh, T. Ok. 3D printing of textiles: potential roadmap to printing with fibers. Adv. Mater. 32, 1902086 (2020).
Lima, M. D. et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscle groups. Science 338, 928–932 (2012).
Xu, P. et al. Bioinspired microfibers with embedded perfusable helical channels. Adv. Mater. 29, 1701664 (2017).
Yu, Y. et al. Bioinspired helical microfibers from microfluidics. Adv. Mater. 29, 1605765 (2017).
Kanik, M. et al. Pressure-programmable fiber-based synthetic muscle. Science 365, 145–150 (2019).
Huang, M. et al. Nanomechanical structure of strained bilayer skinny movies: from design ideas to experimental fabrication. Adv. Mater. 17, 2860–2864 (2005).
Pham, J. T. et al. Extremely stretchable nanoparticle helices by way of geometric asymmetry and floor forces. Adv. Mater. 25, 6703–6708 (2013).
Wu, Z. L. et al. Three-dimensional form transformations of hydrogel sheets induced by small-scale modulation of inner stresses. Nat. Commun. 4, 1586 (2013).
Moestopo, W. P., Mateos, A. J., Fuller, R. M., Greer, J. R. & Portela, C. M. Pushing and pulling on ropes: hierarchical woven supplies. Adv. Sci. 7, 2001271 (2020).
Skylar-Scott, M. A., Gunasekaran, S. & Lewis, J. A. Laser-assisted direct ink writing of planar and 3D steel architectures. Proc. Natl Acad. Sci. 113, 6137–6142 (2016).
Lebel, L. L., Aissa, B., Khakani, M. A. E. & Therriault, D. Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils. Adv. Mater. 22, 592–596 (2010).
Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).
van der Elst, L. et al. 3D printing in fiber-device know-how. Adv. Fiber Mater. 3, 59–75 (2021).
Hart, Ok. R., Dunn, R. M. & Wetzel, E. D. Powerful, additively manufactured constructions fabricated with twin‐thermoplastic filaments. Adv. Eng. Mater. 22, 1901184 (2020).
Loke, G. et al. Structured multimaterial filaments for 3D printing of optoelectronics. Nat. Commun. 10, 4010 (2019).
Xu, W. et al. Evaluation of fiber-based three-dimensional printing for purposes starting from nanoscale nanoparticle alignment to macroscale patterning. ACS Appl. Nano Mater. 4, 7538–7562 (2021).
Mueller, J., Raney, J. R., Shea, Ok. & Lewis, J. A. Architected lattices with excessive stiffness and toughness by way of multicore-shell 3D printing. Adv. Mater. 30, 1705001 (2018).
Chortos, A. et al. Printing reconfigurable bundles of dielectric elastomer fibers. Adv. Funct. Mater. 31, 2010643 (2021).
Raney, J. R. et al. Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proc. Natl Acad. Sci. 115, 1198–1203 (2018).
Lehman, W., Galińska-Rakoczy, A., Hatch, V., Tobacman, L. S. & Craig, R. Structural foundation for the activation of muscle contraction by troponin and tropomyosin. J. Mol. Biol. 388, 673–681 (2009).
Armon, S., Efrati, E., Kupferman, R. & Sharon, E. Geometry and mechanics within the opening of chiral seed pods. Science 333, 1726–1730 (2011).
Burgert, I. & Fratzl, P. Actuation methods in crops as prototypes for bioinspired units. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1541–1557 (2009).
Reyssat, E. & Mahadevan, L. Hygromorphs: from pine cones to biomimetic bilayers. J. R. Soc. Interface 6, 951–957 (2009).
Zhang, J. et al. Robotic synthetic muscle groups: present progress and future views. IEEE Trans. Robotic. 35, 761–781 (2019).
Carpi, F., Migliore, A., Serra, G. & Rossi, D. D. Helical dielectric elastomer actuators. Sensible Mater. Struct. 14, 1210–1216 (2005).
Xin, X., Liu, L., Liu, Y. & Leng, J. Pixel mechanical metamaterials with programmable and reconfigurable properties. Adv. Funct. Mater. 32, 2107795 (2022).
Lipton, J. I. et al. Handedness in shearing auxetics creates inflexible and compliant constructions. Science 360, 632–635 (2018).
Truby, R. L. & Lewis, J. A. Printing tender matter in three dimensions. Nature 540, 371–378 (2016).
Skylar-Scott, M. A., Mueller, J., Visser, C. W. & Lewis, J. A. Voxelated tender matter by way of multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019).
Mahadevan, L., Ryu, W. S. & Samuel, A. D. T. Fluid ‘rope trick’ investigated. Nature 392, 140–140 (1998).
Yuk, H. & Zhao, X. A brand new 3D printing technique by harnessing deformation, instability, and fracture of viscoelastic inks. Adv. Mater. 30, 1704028 (2018).
Chortos, A., Hajiesmaili, E., Morales, J., Clarke, D. R. & Lewis, J. A. 3D printing of interdigitated dielectric elastomer actuators. Adv. Funct. Mater. 30, 1907375 (2020).
Murbach, M., Gerwe, B., Dawson-Elli, N. & Tsui, L. impedance.py: a Python package deal for electrochemical impedance evaluation. J. Open Supply Softw. 5, 2349 (2020).
Lasia, A. Electrochemical Impedance Spectroscopy and its Purposes (Springer, 2014).