Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Concept of spin torques and big magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).
Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).
MacDonald, A. H. & Tsoi, M. Antiferromagnetic steel spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).
Marti, X. et al. Room-temperature antiferromagnetic reminiscence resistor. Nat. Mater. 13, 367–374 (2014).
Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Corridor impact arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).
Nakatsuji, S., Kiyohara, N. & Higo, T. Giant anomalous Corridor impact in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Corridor impact in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).
Feng, Z. et al. An anomalous Corridor impact in altermagnetic ruthenium dioxide. Nat. Electron. https://doi.org/10.1038/s41928-022-00866-z (2022).
Olejník, Okay. et al. Terahertz electrical writing velocity in an antiferromagnetic reminiscence. Sci. Adv. 4, eaar3566 (2018).
Liu, Z. et al. Antiferromagnetic piezospintronics. Adv. Electron. Mater. 5, 1900176 (2019).
Bodnar, S. et al. Magnetoresistance results within the metallic antiferromagnet Mn2Au. Phys. Rev. Appl. 14, 014004 (2020).
Yan, H. et al. A piezoelectric, strain-controlled antiferromagnetic reminiscence insensitive to magnetic fields. Nat. Nanotechnol. 14, 131–136 (2019).
Yan, H. et al. Electrical-field-controlled antiferromagnetic spintronic gadgets. Adv. Mater. 32, 1905603 (2020).
Kiyohara, N., Tomita, T. & Nakatsuji, S. Large anomalous Corridor impact within the chiral antiferromagnet Mn3Ge. Phys. Rev. Appl. 5, 064009 (2016).
Liu, Z. et al. Electrical switching of the topological anomalous Corridor impact in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).
Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Corridor antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).
Yan, H., Qin, P. & Liu, Z. Exterior-field management of collinear and noncollinear antiferromagnetic spins. Mat. China 40, 881–893 (2021).
Liu, Z. et al. Epitaxial progress of intermetallic MnPt movies on oxides and huge change bias. Adv. Mater. 28, 118–123 (2016).
Guo, H. et al. Large piezospintronic impact in a noncollinear antiferromagnetic steel. Adv. Mater. 32, 2002300 (2020).
Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Giant magnetoresistance at room temperature in ferromagnetic skinny movie tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).
Miyazaki, T. & Tezuka, N. Large magnetic tunneling impact in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).
Zhang, S., Levy, P. M., Marley, A. C. & Parkin, S. S. P. Quenching of magnetoresistance by scorching electrons in magnetic tunnel junctions. Phys. Rev. Lett. 79, 3744–3747 (1997).
Moodera, J. S., Nowak, J. & Veerdonk, R. Interface magnetism and spin wave scattering in ferromagnet-insulator-ferromagnet tunnel junctions. Phys. Rev. Lett. 80, 2941–2944 (1998).
Han, X., Oogane, M., Kubota, H., Ando, Y. & Miyazaki, T. Fabrication of high-magnetoresistance tunnel junctions utilizing Co75Fe25 ferromagnetic electrodes. Appl. Phys. Lett. 77, 283 (2000).
Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300 Okay by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at excessive temperature. Appl. Phys. Lett. 93, 082508 (2008).
Xu, P. X. et al. Affect of roughness and dysfunction on tunneling magnetoresistance. Phys. Rev. B 73, 180402(R) (2006).
Maria, J. et al. Position of metal-oxide interface in figuring out the spin polarization of magnetic tunnel junctions. Science 286, 507–509 (1999).
Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized present in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).
Qin, P.-X. et al. Noncollinear spintronics and electric-field management: a evaluate. Uncommon Met. 39, 95–112 (2020).
Chen, H. et al. Noncollinear antiferromagnetic spintronics. Mater. Lab 1, 220032 (2022).
Yuan, L., Wang, Z., Luo, J. & Zunger, A. Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even with out spin-orbit coupling. Phys. Rev. Mater. 5, 014409 (2021).
Krén, E., Kádár, G., Pál, L. & Szabó, P. Investigation of the first-order magnetic transformation in Mn3Pt. J. Appl. Phys. 38, 1265–1266 (1967).
Tsymbal, E. Y., Mryasov, O. N. & LeClair, P. R. Spin-dependent tunneling in magnetic tunnel junctions. J. Phys. Condens. Matter 15, R109–R142 (2003).
Butler, W. H., Zhang, X.-G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 054416 (2001).
Parkin, S. S. P. et al. Large tunneling magnetoresistance at room temperature with MgO (100) tunnel boundaries. Nat. Mater. 3, 862–867 (2004).
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, Okay. Large room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).
Dong, J. T. et al. Tunneling magnetoresistance in noncollinear antiferromagnetic tunnel junctions. Phys. Rev. Lett. 128, 197201 (2022).
Giannozzi, P. et al. Superior capabilities for supplies modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Vanderbilt, D. Mushy self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895(R) (1990).
Garrity, Okay. F., Bennett, J. W., Rabe, Okay. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014).
Choi, H. J. & Ihm, J. Ab initio pseudopotential methodology for the calculation of conductance in quantum wires. Phys. Rev. B 59, 2267–2275 (1999).
Smogunov, A., Corso, A. D. & Tosatti, E. Ballistic conductance of magnetic Co and Ni nanowires with ultrasoft pseudopotentials. Phys. Rev. B 70, 045417 (2004).
Jenkins, S. et al. Atomistic origin of change anisotropy in noncollinear γ-IrMn3-CoFe bilayers. Phys. Rev. B 102, 140404(R) (2020).
Evans, R. et al. Atomistic spin mannequin simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).
Jenkins, S., Chantrell, R. & Evans, R. Trade bias in multigranular noncollinear IrMn3/CoFe skinny movies. Phys. Rev. B 103, 014424 (2021).
Kokalj, A. XCrySDen—a brand new program for displaying crystalline constructions and electron densities. J. Mol. Graph. Mannequin. 17, 176–179 (1999).