Thursday, February 2, 2023
HomeNatureRoom-temperature magnetoresistance in an all-antiferromagnetic tunnel junction

Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction


  • Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Concept of spin torques and big magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • MacDonald, A. H. & Tsoi, M. Antiferromagnetic steel spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marti, X. et al. Room-temperature antiferromagnetic reminiscence resistor. Nat. Mater. 13, 367–374 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Corridor impact arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Giant anomalous Corridor impact in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Corridor impact in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Feng, Z. et al. An anomalous Corridor impact in altermagnetic ruthenium dioxide. Nat. Electron. https://doi.org/10.1038/s41928-022-00866-z (2022).

    Article 

    Google Scholar
     

  • Olejník, Okay. et al. Terahertz electrical writing velocity in an antiferromagnetic reminiscence. Sci. Adv. 4, eaar3566 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Z. et al. Antiferromagnetic piezospintronics. Adv. Electron. Mater. 5, 1900176 (2019).

    Article 

    Google Scholar
     

  • Bodnar, S. et al. Magnetoresistance results within the metallic antiferromagnet Mn2Au. Phys. Rev. Appl. 14, 014004 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yan, H. et al. A piezoelectric, strain-controlled antiferromagnetic reminiscence insensitive to magnetic fields. Nat. Nanotechnol. 14, 131–136 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yan, H. et al. Electrical-field-controlled antiferromagnetic spintronic gadgets. Adv. Mater. 32, 1905603 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kiyohara, N., Tomita, T. & Nakatsuji, S. Large anomalous Corridor impact within the chiral antiferromagnet Mn3Ge. Phys. Rev. Appl. 5, 064009 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Z. et al. Electrical switching of the topological anomalous Corridor impact in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Corridor antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yan, H., Qin, P. & Liu, Z. Exterior-field management of collinear and noncollinear antiferromagnetic spins. Mat. China 40, 881–893 (2021).


    Google Scholar
     

  • Liu, Z. et al. Epitaxial progress of intermetallic MnPt movies on oxides and huge change bias. Adv. Mater. 28, 118–123 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, H. et al. Large piezospintronic impact in a noncollinear antiferromagnetic steel. Adv. Mater. 32, 2002300 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Giant magnetoresistance at room temperature in ferromagnetic skinny movie tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miyazaki, T. & Tezuka, N. Large magnetic tunneling impact in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, S., Levy, P. M., Marley, A. C. & Parkin, S. S. P. Quenching of magnetoresistance by scorching electrons in magnetic tunnel junctions. Phys. Rev. Lett. 79, 3744–3747 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moodera, J. S., Nowak, J. & Veerdonk, R. Interface magnetism and spin wave scattering in ferromagnet-insulator-ferromagnet tunnel junctions. Phys. Rev. Lett. 80, 2941–2944 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Han, X., Oogane, M., Kubota, H., Ando, Y. & Miyazaki, T. Fabrication of high-magnetoresistance tunnel junctions utilizing Co75Fe25 ferromagnetic electrodes. Appl. Phys. Lett. 77, 283 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300 Okay by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at excessive temperature. Appl. Phys. Lett. 93, 082508 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Xu, P. X. et al. Affect of roughness and dysfunction on tunneling magnetoresistance. Phys. Rev. B 73, 180402(R) (2006).

    Article 
    ADS 

    Google Scholar
     

  • Maria, J. et al. Position of metal-oxide interface in figuring out the spin polarization of magnetic tunnel junctions. Science 286, 507–509 (1999).

    Article 

    Google Scholar
     

  • Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized present in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Qin, P.-X. et al. Noncollinear spintronics and electric-field management: a evaluate. Uncommon Met. 39, 95–112 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Noncollinear antiferromagnetic spintronics. Mater. Lab 1, 220032 (2022).


    Google Scholar
     

  • Yuan, L., Wang, Z., Luo, J. & Zunger, A. Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even with out spin-orbit coupling. Phys. Rev. Mater. 5, 014409 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Krén, E., Kádár, G., Pál, L. & Szabó, P. Investigation of the first-order magnetic transformation in Mn3Pt. J. Appl. Phys. 38, 1265–1266 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Tsymbal, E. Y., Mryasov, O. N. & LeClair, P. R. Spin-dependent tunneling in magnetic tunnel junctions. J. Phys. Condens. Matter 15, R109–R142 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Butler, W. H., Zhang, X.-G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Parkin, S. S. P. et al. Large tunneling magnetoresistance at room temperature with MgO (100) tunnel boundaries. Nat. Mater. 3, 862–867 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, Okay. Large room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dong, J. T. et al. Tunneling magnetoresistance in noncollinear antiferromagnetic tunnel junctions. Phys. Rev. Lett. 128, 197201 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Giannozzi, P. et al. Superior capabilities for supplies modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vanderbilt, D. Mushy self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895(R) (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Garrity, Okay. F., Bennett, J. W., Rabe, Okay. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Choi, H. J. & Ihm, J. Ab initio pseudopotential methodology for the calculation of conductance in quantum wires. Phys. Rev. B 59, 2267–2275 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Smogunov, A., Corso, A. D. & Tosatti, E. Ballistic conductance of magnetic Co and Ni nanowires with ultrasoft pseudopotentials. Phys. Rev. B 70, 045417 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Jenkins, S. et al. Atomistic origin of change anisotropy in noncollinear γ-IrMn3-CoFe bilayers. Phys. Rev. B 102, 140404(R) (2020).

    Article 
    ADS 

    Google Scholar
     

  • Evans, R. et al. Atomistic spin mannequin simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jenkins, S., Chantrell, R. & Evans, R. Trade bias in multigranular noncollinear IrMn3/CoFe skinny movies. Phys. Rev. B 103, 014424 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kokalj, A. XCrySDen—a brand new program for displaying crystalline constructions and electron densities. J. Mol. Graph. Mannequin. 17, 176–179 (1999).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular