Wednesday, February 8, 2023
HomeNatureRiver ecosystem metabolism and carbon biogeochemistry in a altering world

River ecosystem metabolism and carbon biogeochemistry in a altering world


  • Battin, T. J. et al. The boundless carbon cycle. Nat. Geosci. 2, 598–600 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Raymond, P. A. et al. World carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the dimensions of streams and rivers. Nat. Geosci. 8, 696–699 (2015). Vital research conceptualizing (on the premise of a knowledge synthesis) how the sources and magnitude of CO2 evasion flux change alongside a stream–river continuum.

  • Ciais, P. et al. in Local weather Change 2013 The Bodily Science Foundation. Contribution of Working Group I to the Fifth Evaluation Report of the Intergovernmental Panel on Local weather Change (eds Stocker, T. F. et al.) Ch. 6 (Cambridge Univ. Press, 2013).

  • Friedlingstein, P. et al. World carbon funds 2021. Earth Syst. Sci. Information 14, 1917–2005 (2022).

    Article 

    Google Scholar
     

  • Cole, J. J. et al. Plumbing the worldwide carbon cycle: integrating inland waters into the terrestrial carbon funds. Ecosystems 10, 172–185 (2007). A pioneering research exhibiting the function of inland waters for large-scale carbon fluxes and highlighting them as ‘reactors’ somewhat than ‘passive pipes’.

    Article 

    Google Scholar
     

  • Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a present synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3, 132–142 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Odum, H. T. Main manufacturing in flowing waters. Limnol. Oceanogr. 1, 102–117 (1956).

    Article 

    Google Scholar
     

  • Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, 99–118 (2018). A synthesis of the predominant drivers and constraints on metabolic regimes of stream and river ecosystems.

    Article 

    Google Scholar
     

  • Barnes, A. D. et al. Power flux: the hyperlink between multitrophic biodiversity and ecosystem functioning. Developments Ecol. Evol. 33, 186–197 (2018).

    Article 

    Google Scholar
     

  • Costanza, R. & Mageau, M. What’s a wholesome ecosystem? Aquat. Ecol. 33, 105–115 (1999).

    Article 

    Google Scholar
     

  • Blöschl, G. et al. Altering local weather each will increase and reduces European river floods. Nature 573, 108–111 (2019).

    Article 

    Google Scholar
     

  • Gudmundsson, L. et al. Globally noticed tendencies in imply and excessive river movement attributed to local weather change. Science 371, 1159–1162 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X., Pavelsky, T. M. & Allen, G. H. The previous and future of worldwide river ice. Nature 577, 69–73 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Belletti, B. et al. A couple of million limitations fragment Europe’s rivers. Nature 588, 436–441 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. Excessive-resolution mapping of worldwide floor water and its long-term adjustments. Nature 540, 418–422 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cooley, S. W., Ryan, J. C. & Smith, L. C. Human alteration of worldwide floor water storage variability. Nature 591, 78–81 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jaramillo, F. & Destouni, G. Native movement regulation and irrigation increase world human water consumption and footprint. Science 350, 1248–1251 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Quinton, J. N., Govers, G., Oost, Ok. V. & Bardgett, R. D. The influence of agricultural soil erosion on biogeochemical biking. Nat. Geosci. 3, 311–314 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mekonnen, M. M. & Hoekstra, A. Y. World anthropogenic phosphorus hundreds to freshwater and related gray water footprints and water air pollution ranges: a excessive‐decision world research. Water Resour. Res. 54, 345–358 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013). The primary research exhibiting the extent to which human actions have altered the magnitude of latest lateral carbon fluxes from land to ocean.

    Article 
    CAS 

    Google Scholar
     

  • Rüegg, J. et al. Considering like a client: linking aquatic basal metabolism and client dynamics. Limnol. Oceanogr. Lett. 6, 1–17 (2021).

    Article 

    Google Scholar
     

  • Fernández-Martínez, M. et al. World tendencies in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).

    Article 

    Google Scholar
     

  • Behrenfeld, M. J. et al. Local weather-driven tendencies in up to date ocean productiveness. Nature 444, 752–755 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Phillips, J. S. Time‐various responses of lake metabolism to gentle and temperature. Limnol. Oceanogr. 65, 652–666 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Uehlinger, U. Annual cycle and inter‐annual variability of gross major manufacturing and ecosystem respiration in a floodprone river throughout a 15‐yr interval. Freshw. Biol. 51, 938–950 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Uehlinger, U. & Naegeli, M. W. Ecosystem metabolism, disturbance, and stability in a prealpine gravel mattress river. J. North Am. Benthol. Soc. 17, 165–178 (1998).

    Article 

    Google Scholar
     

  • Mulholland, P. J. et al. Inter-biome comparability of things controlling stream metabolism. Freshw. Biol. 46, 1503–1517 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Roberts, B. J., Mulholland, P. J. & Hill, W. R. A number of scales of temporal variability in ecosystem metabolism charges: outcomes from 2 years of steady monitoring in a forested headwater stream. Ecosystems 10, 588–606 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Appling, A. P., Corridor, R. O., Yackulic, C. B. & Arroita, M. Overcoming equifinality: leveraging very long time collection for stream metabolism estimation. J. Geophys. Res. Biogeosci. 123, 624–645 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Appling, A. P. et al. The metabolic regimes of 356 rivers in america. Sci. Information 5, 180292 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Canadell, M. B. et al. Regimes of major manufacturing and their drivers in Alpine streams. Freshw. Biol. 66, 1449–1463 (2021).

    Article 

    Google Scholar
     

  • Myrstener, M., Gómez‐Gener, L., Rocher‐Ros, G., Giesler, R. & Sponseller, R. A. Vitamins affect seasonal metabolic patterns and whole productiveness of Arctic streams. Limnol. Oceanogr. 66, S182–S196 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Savoy, P. et al. Metabolic rhythms in flowing waters: an strategy for classifying river productiveness regimes. Limnol. Oceanogr. 64, 1835–1851 (2019).

    Article 

    Google Scholar
     

  • Kirk, L., Hensley, R. T., Savoy, P., Heffernan, J. B. & Cohen, M. J. Estimating benthic gentle regimes improves predictions of major manufacturing and constrains light-use effectivity in streams and rivers. Ecosystems 24, 825–839 (2021).

    Article 

    Google Scholar
     

  • Bernhardt, E. S. et al. Mild and movement regimes regulate the metabolism of rivers. Proc. Natl Acad. Sci. USA 119, e2121976119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Savoy, P. & Harvey, J. W. Predicting gentle regime controls on major productiveness throughout CONUS river networks. Geophys. Res. Lett. 48, e2020GL092149 (2021).

    Article 

    Google Scholar
     

  • Julian, J. P., Stanley, E. H. & Doyle, M. W. Basin-scale penalties of agricultural land use on benthic gentle availability and first manufacturing alongside a sixth-order temperate river. Ecosystems 11, 1091–1105 (2008).

    Article 

    Google Scholar
     

  • Corridor, R. O. et al. Turbidity, gentle, temperature, and hydropeaking management major productiveness within the Colorado River, Grand Canyon. Limnol. Oceanogr. 60, 512–526 (2015).

    Article 

    Google Scholar
     

  • Hosen, J. D. et al. Enhancement of major manufacturing throughout drought in a temperate watershed is larger in bigger rivers than headwater streams. Limnol. Oceanogr. 64, 1458–1472 (2019).

    Article 

    Google Scholar
     

  • Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the worldwide carbon cycle to particular person metabolism. Funct. Ecol. 19, 202–213 (2005).

    Article 

    Google Scholar
     

  • Demars, B. O. L. et al. Temperature and the metabolic steadiness of streams. Freshw. Biol. 56, 1106–1121 (2011).

    Article 

    Google Scholar
     

  • Track, C. et al. Continental-scale lower in web major productiveness in streams as a result of local weather warming. Nat. Geosci. 11, 415–420 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hood, J. M. et al. Elevated useful resource use effectivity amplifies constructive response of aquatic major manufacturing to experimental warming. Glob. Change Biol. 24, 1069–1084 (2018).

    Article 

    Google Scholar
     

  • Schindler, D. E., Carpenter, S. R., Cole, J. J., Kitchell, J. F. & Tempo, M. L. Affect of meals internet construction on carbon trade between lakes and the ambiance. Science 277, 248–251 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Iannucci, F. M., Beneš, J., Medvedeff, A. & Bowden, W. B. Biogeochemical responses over 37 years to manipulation of phosphorus concentrations in an Arctic river: The Higher Kuparuk River Experiment. Hydrol. Course of. 35, e14075 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rosemond, A. D. et al. Experimental nutrient additions speed up terrestrial carbon loss from stream ecosystems. Science 347, 1142–1145 (2015). A key research explaining how nutrient extra can speed up terrestrial carbon loss from stream ecosystems.

    Article 
    CAS 

    Google Scholar
     

  • Arroita, M., Elosegi, A. & Corridor, R. O. Jr Twenty years of each day metabolism present riverine restoration following sewage abatement. Limnol. Oceanogr. 64, 77–92 (2019).

    Article 

    Google Scholar
     

  • Battin, T. J. et al. Biophysical controls on natural carbon fluxes in fluvial networks. Nat. Geosci. 1, 95–100 (2008). An vital article conceptualizing how bodily and organic processes mix to form metabolic dynamics and carbon fluxes in fluvial networks.

    Article 
    CAS 

    Google Scholar
     

  • Hoellein, T. J., Bruesewitz, D. A. & Richardson, D. C. Revisiting Odum (1956): a synthesis of aquatic ecosystem metabolism. Limnol. Oceanogr. 58, 2089–2100 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Marzolf, N. S. & Ardón, M. Ecosystem metabolism in tropical streams and rivers: a evaluate and synthesis. Limnol. Oceanogr. 66, 1627–1638 (2021).

    Article 

    Google Scholar
     

  • Gounand, I., Little, C. J., Harvey, E. & Altermatt, F. Cross-ecosystem carbon flows connecting ecosystems worldwide. Nat. Commun. 9, 4825 (2018).

    Article 

    Google Scholar
     

  • Ciais, P. et al. Empirical estimates of regional carbon budgets suggest diminished world soil heterotrophic respiration. Natl Sci. Rev. 8, nwaa145 (2020).

    Article 

    Google Scholar
     

  • Bauer, J. E. et al. The altering carbon cycle of the coastal ocean. Nature 504, 61–70 (2013). Vital evaluate on the sources, trade and fates of carbon within the coastal ocean and the way human actions have altered the coastal carbon cycle.

    Article 
    CAS 

    Google Scholar
     

  • Reichert, P., Uehlinger, U. & Acuña, V. Estimating stream metabolism from oxygen concentrations: impact of spatial heterogeneity. J. Geophys. Res. Biogeosci. 114, G03016 (2009).

    Article 

    Google Scholar
     

  • Koenig, L. E. et al. Emergent productiveness regimes of river networks. Limnol. Oceanogr. Lett. 4, 173–181 (2019).

    Article 

    Google Scholar
     

  • Rodríguez-Castillo, T., Estévez, E., González-Ferreras, A. M. & Barquín, J. Estimating ecosystem metabolism to complete river networks. Ecosystems 22, 892–911 (2019).

    Article 

    Google Scholar
     

  • Segatto, P. L., Battin, T. J. & Bertuzzo, E. The metabolic regimes on the scale of a complete stream community unveiled by sensor information and machine studying. Ecosystems 24, 1792–1809 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Loreau, M., Mouquet, N. & Holt, R. D. Meta‐ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol. Lett. 6, 673–679 (2003).

    Article 

    Google Scholar
     

  • Mastrandrea, M. D. et al. Steerage Be aware for Lead Authors of the IPCC Fifth Evaluation Report on Constant Remedy of Uncertainties (Intergovernmental Panel on Local weather Change (IPCC), 2010).

  • Tank, S. E., Fellman, J. B., Hood, E. & Kritzberg, E. S. Past respiration: controls on lateral carbon fluxes throughout the terrestrial‐aquatic interface. Limnol. Oceanogr. Lett. 3, 76–88 (2018). Vital synthesis on the mechanisms and controls of natural and inorganic carbon flows throughout terrestrial–aquatic interfaces.

    Article 

    Google Scholar
     

  • Aitkenhead, J. A. & McDowell, W. H. Soil C:N ratio as a predictor of annual riverine DOC flux at native and world scales. World Biogeochem. Cycles 14, 127–138 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Regnier, P., Resplandy, L., Najjar, R. G. & Ciais, P. The land-to-ocean loops of the worldwide carbon cycle. Nature 603, 401–410 (2022).

    Article 
    CAS 

    Google Scholar
     

  • van Hoek, W. J. et al. Exploring spatially specific adjustments in carbon budgets of worldwide river basins through the twentieth century. Environ. Sci. Technol. 55, 16757–16769 (2021). A worldwide quantitative evaluation of river carbon fluxes within the twentieth century, highlighting the mixed affect of environmental and anthropogenic controls on the long-term patterns of worldwide carbon export.

    Article 

    Google Scholar
     

  • Abril, G. & Borges, A. V. Concepts and views: carbon leaks from flooded land: do we have to replumb the inland water lively pipe? Biogeosciences 16, 769–784 (2019). Vital evaluate emphasizing the function of flooding for inland water carbon biking on the world scale.

    Article 
    CAS 

    Google Scholar
     

  • Lauerwald, R., Regnier, P., Guenet, B., Friedlingstein, P. & Ciais, P. How simulations of the land carbon sink are biased by ignoring fluvial carbon transfers: a case research for the Amazon Basin. One Earth 3, 226–236 (2020).

    Article 

    Google Scholar
     

  • Raymond, P. A., Saiers, J. E. & Sobczak, W. V. Hydrological and biogeochemical controls on watershed dissolved natural matter transport: pulse‐shunt idea. Ecology 97, 5–16 (2016).

    Article 

    Google Scholar
     

  • Catalán, N., Marcé, R., Kothawala, D. N. & Tranvik, L. J. Natural carbon decomposition charges managed by water retention time throughout inland waters. Nat. Geosci. 9, 501–504 (2016).

    Article 

    Google Scholar
     

  • Maavara, T., Lauerwald, R., Regnier, P. & Cappellen, P. V. World perturbation of natural carbon biking by river damming. Nat. Commun. 8, 15347 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mendonça, R. et al. Natural carbon burial in world lakes and reservoirs. Nat. Commun. 8, 1694–1697 (2017).

    Article 

    Google Scholar
     

  • Downing, J. A. et al. Sediment natural carbon burial in agriculturally eutrophic impoundments over the past century. World Biogeochem. Cycles 22, GB1018 (2008).

    Article 

    Google Scholar
     

  • Deemer, B. R. et al. Greenhouse fuel emissions from reservoir water surfaces: a brand new world synthesis. Bioscience 66, 949–964 (2016).

    Article 

    Google Scholar
     

  • Abril, G. et al. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505, 395–398 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dodds, W. Ok. et al. Abiotic controls and temporal variability of river metabolism: multiyear analyses of Mississippi and Chattahoochee River information. Freshw. Sci. 32, 1073–1087 (2013).

    Article 

    Google Scholar
     

  • Ros, G. R., Sponseller, R. A., Bergström, A. Ok., Myrstener, M. & Giesler, R. Stream metabolism controls diel patterns and evasion of CO2 in Arctic streams. Glob. Change Biol. 26, 1400–1413 (2020).

    Article 

    Google Scholar
     

  • Rasilo, T., Hutchins, R. H. S., Ruiz-González, C. & Del Giorgio, P. A. Transport and transformation of soil-derived CO2, CH4 and DOC maintain CO2 supersaturation in small boreal streams. Sci. Whole Environ. 579, 902–912 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Aho, Ok. S., Hosen, J. D., Logozzo, L. A., McGillis, W. R. & Raymond, P. A. Highest charges of gross major productiveness maintained regardless of CO2 depletion in a temperate river community. Limnol. Oceanogr. Lett. 6, 200–206 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wehrli, B. Conduits of the carbon cycle. Nature 503, 346–347 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sarmiento, J. L. & Sundquist, E. T. Revised funds for the oceanic uptake of anthropogenic carbon dioxide. Nature 356, 589–593 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Lacroix, F., Ilyina, T., Laruelle, G. G. & Regnier, P. Reconstructing the preindustrial coastal carbon cycle by a world ocean circulation mannequin: was the worldwide continental shelf already each autotrophic and a CO2 sink? Glob. Biogeochem. Cycles 35, e2020GB006603 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L. & Gloor, M. A joint ambiance‐ocean inversion for floor fluxes of carbon dioxide: 1. Strategies and world‐scale fluxes. World Biogeochem. Cycles 21, GB1019 (2007).


    Google Scholar
     

  • Resplandy, L. et al. Revision of worldwide carbon fluxes primarily based on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11, 504–509 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, L.-C. et al. Uncommon roles of discharge, slope and SOC in DOC transport in small mountainous rivers, Taiwan. Sci. Rep. 9, 1574 (2019).

    Article 

    Google Scholar
     

  • Reddy, S. Ok. Ok. et al. Export of particulate natural carbon by the mountainous tropical rivers of Western Ghats, India: variations and controls. Sci. Whole Environ. 751, 142115 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X., Tarpley, D. & Sullivan, J. T. Various responses of vegetation phenology to a warming local weather. Geophys. Res. Lett. 34, L19405 (2007).

    Article 

    Google Scholar
     

  • Pan, Y. et al. A big and protracted carbon sink on this planet’s forests. Science 333, 988–993 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Heathcote, A. J., Anderson, N. J., Prairie, Y. T., Engstrom, D. R. & del Giorgio, P. A. Giant will increase in carbon burial in northern lakes through the Anthropocene. Nat. Commun. 6, 10016 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Guillemette, F., Berggren, M., Giorgio, P. Adel. & Lapierre, J.-F. Will increase in terrestrially derived carbon stimulate natural carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat. Commun. 4, 2972 (2013).

    Article 

    Google Scholar
     

  • Hastie, A., Lauerwald, R., Ciais, P., Papa, F. & Regnier, P. Historic and future contributions of inland waters to the Congo Basin carbon steadiness. Earth Syst. Dyn. 12, 37–62 (2020).

    Article 

    Google Scholar
     

  • Nakhavali, M. et al. Leaching of dissolved natural carbon from mineral soils performs a big function within the terrestrial carbon steadiness. Glob. Change Biol. 27, 1083–1096 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tian, H. et al. World patterns and controls of soil natural carbon dynamics as simulated by a number of terrestrial biosphere fashions: present standing and future instructions. World Biogeochem. Cycles 29, 775–792 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Öquist, M. G. et al. The total annual carbon steadiness of boreal forests is very delicate to precipitation. Environ. Sci. Technol. Lett. 1, 315–319 (2014).

    Article 

    Google Scholar
     

  • Jones, J. B.Jr, Stanley, E. H. & Mulholland, P. J. Lengthy‐time period decline in carbon dioxide supersaturation in rivers throughout the contiguous United States. Geophys. Res. Lett. 30, 1495 (2003).

    Article 

    Google Scholar
     

  • Raymond, P. A. & Oh, N.-H. Long run adjustments of chemical weathering merchandise in rivers closely impacted from acid mine drainage: insights on the influence of coal mining on regional and world carbon and sulfur budgets. Earth Planet. Sci. Lett. 284, 50–56 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ran, L. et al. Substantial lower in CO2 emissions from Chinese language inland waters as a result of world change. Nat. Commun. 12, 1730 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zarnetske, J. P., Bouda, M., Geophysical, B. A., Saiers, J. & Raymond, P. Generality of hydrologic transport limitation of watershed natural carbon flux throughout ecoregions of america. Geophys. Res. Lett. 45, 11,702–11,711 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S. et al. The significance of hydrology in routing terrestrial carbon to the ambiance by way of world streams and rivers. Proc. Natl Acad. Sci. USA 119, e2106322119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nydahl, A. C., Wallin, M. B. & Weyhenmeyer, G. A. No lengthy‐time period tendencies in pCO2 regardless of growing natural carbon concentrations in boreal lakes, streams, and rivers. World Biogeochem. Cycles 31, 985–995 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Raymond, P. A. & Hamilton, S. Ok. Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans. Limnol. Oceanogr. Lett. 3, 143–155 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ulseth, A. J., Bertuzzo, E., Singer, G. A., Schelker, J. & Battin, T. J. Local weather-induced adjustments in spring snowmelt influence ecosystem metabolism and carbon fluxes in an Alpine stream community. Ecosystems 21, 373–390 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow in the direction of rain results in a lower in streamflow. Nat. Clim. Change 4, 583–586 (2014).

    Article 

    Google Scholar
     

  • Drake, T. W. et al. Mobilization of aged and biolabile soil carbon by tropical deforestation. Nat. Geosci. 12, 541–546 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wit, F. et al. The influence of disturbed peatlands on river outgassing in Southeast Asia. Nat. Commun. 6, 10155 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Moore, S., Gauci, V., Evans, C. D. & Web page, S. E. Fluvial natural carbon losses from a Bornean blackwater river. Biogeosciences 8, 901–909 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Masese, F. O., Salcedo-Borda, J. S., Gettel, G. M., Irvine, Ok. & McClain, M. E. Affect of catchment land use and seasonality on dissolved natural matter composition and ecosystem metabolism in headwater streams of a Kenyan river. Biogeochemistry 132, 1–22 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bernot, M. J. et al. Inter‐regional comparability of land‐use results on stream metabolism. Freshw. Biol. 55, 1874–1890 (2010). Among the many first research exhibiting how land use alters ecosystem metabolism throughout geographic areas.

    Article 

    Google Scholar
     

  • Griffiths, N. A. et al. Agricultural land use alters the seasonality and magnitude of stream metabolism. Limnol. Oceanogr. 58, 1513–1529 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sweeney, B. W. et al. Riparian deforestation, stream narrowing, and lack of stream ecosystem companies. Proc. Natl Acad. Sci. 101, 14132–14137 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Roley, S. S., Tank, J. L., Griffiths, N. A., Corridor, R. O. Jr & Davis, R. T. The affect of floodplain restoration on whole-stream metabolism in an agricultural stream: insights from a 5-year steady information set. Freshw. Sci. 33, 1043–1059 (2014).

    Article 

    Google Scholar
     

  • Crawford, J. T., Stanley, E. H., Dornblaser, M. M. & Striegl, R. G. CO2 time collection patterns in contrasting headwater streams of North America. Aquat. Sci. 79, 473–486 (2016).

    Article 

    Google Scholar
     

  • Blackburn, S. R. & Stanley, E. H. Floods improve carbon dioxide and methane fluxes in agricultural streams. Freshw. Biol. 66, 62–77 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Robertson, G. P., Paul, E. A. & Harwood, R. R. Greenhouse gases in intensive agriculture: contributions of particular person gases to the radiative forcing of the ambiance. Science 289, 1922–1925 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Min, S.-Ok., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yin, J. et al. Giant improve in world storm runoff extremes pushed by local weather and anthropogenic adjustments. Nat. Commun. 9, 4389 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Myhre, G. et al. Smart warmth has considerably affected the worldwide hydrological cycle over the historic interval. Nat. Commun. 9, 1922 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Messager, M. L. et al. World prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ward, A. S., Wondzell, S. M., Schmadel, N. M. & Herzog, S. P. Local weather change causes river community contraction and disconnection within the H.J. Andrews Experimental Forest, Oregon, USA. Entrance. Water 2, 7 (2020).

    Article 

    Google Scholar
     

  • Sabater, S., Timoner, X., Borrego, C. & Acuña, V. Stream biofilm responses to movement intermittency: from cells to ecosystems. Entrance. Environ. Sci. 4, 14 (2016).

    Article 

    Google Scholar
     

  • Gómez-Gener, L., Lupon, A., Laudon, H. & Sponseller, R. A. Drought alters the biogeochemistry of boreal stream networks. Nat. Commun. 11, 1795 (2020).

    Article 

    Google Scholar
     

  • Marcé, R. et al. Emissions from dry inland waters are a blind spot within the world carbon cycle. Earth Sci. Rev. 188, 240–248 (2019).

    Article 

    Google Scholar
     

  • Blaszczak, J. R., Delesantro, J. M., City, D. L., Doyle, M. W. & Bernhardt, E. S. Scoured or suffocated: city stream ecosystems oscillate between hydrologic and dissolved oxygen extremes. Limnol. Oceanogr. 64, 877–894 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Reisinger, A. J. et al. Restoration and resilience of city stream metabolism following Superstorm Sandy and different floods. Ecosphere 8, e01776 (2017).

    Article 

    Google Scholar
     

  • O’Donnell, B. & Hotchkiss, E. R. Coupling focus‐ and course of‐discharge relationships integrates water chemistry and metabolism in streams. Water Resour. Res. 55, 10179–10190 (2019).

    Article 

    Google Scholar
     

  • Thellman, A. et al. The ecology of river ice. J. Geophys. Res. Biogeosci. 126, e2021JG006275 (2021).

    Article 

    Google Scholar
     

  • Maavara, T. et al. River dam impacts on biogeochemical biking. Nat. Rev. Earth Environ. 1, 103–116 (2020).

    Article 

    Google Scholar
     

  • Rosentreter, J. A. et al. Half of worldwide methane emissions come from extremely variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Barros, N. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 4, 593–596 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Keller, P. S., Marcé, R., Obrador, B. & Koschorreck, M. World carbon funds of reservoirs is overturned by the quantification of drawdown areas. Nat. Geosci. 14, 402–408 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Calamita, E. et al. Unaccounted CO2 leaks downstream of a big tropical hydroelectric reservoir. Proc. Natl Acad. Sci. USA 118, e2026004118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Park, J.-H. et al. Opinions and syntheses: anthropogenic perturbations to carbon fluxes in Asian river techniques – ideas, rising tendencies, and analysis challenges. Biogeosciences 15, 3049–3069 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rosamond, M. S., Thuss, S. J. & Schiff, S. L. Dependence of riverine nitrous oxide emissions on dissolved oxygen ranges. Nat. Geosci. 5, 715–718 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Stanley, E. H. et al. The ecology of methane in streams and rivers: patterns, controls, and world significance. Ecol. Monogr. 86, 146–171 (2016). Key paper highlighting the function of streams and rivers for methane manufacturing and emissions and creating a conceptual framework on the environmental drivers of methane dynamics in fluvial ecosystems.

    Article 

    Google Scholar
     

  • Breitburg, D. et al. Declining oxygen within the world ocean and coastal waters. Science 359, eaam7240 (2018).

    Article 

    Google Scholar
     

  • Jane, S. F. et al. Widespread deoxygenation of temperate lakes. Nature 594, 66–70 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W. & Bencala, Ok. E. Retention and transport of vitamins in a 3rd‐order stream in northwestern California: hyporheic processes. Ecology 70, 1893–1905 (1989).

    Article 

    Google Scholar
     

  • Carter, A. M., Blaszczak, J. R., Heffernan, J. B. & Bernhardt, E. S. Hypoxia dynamics and spatial distribution in a low gradient river. Limnol. Oceanogr. 66, 2251–2265 (2021).

    Article 

    Google Scholar
     

  • Kadygrov, N. et al. On the potential of the ICOS atmospheric CO2 measurement community for estimating the biogenic CO2 funds of Europe. Atmos. Chem. Phys. 15, 12765–12787 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hanson, P. C., Weathers, Ok. C. & Kratz, T. Ok. Networked lake science: how the World Lake Ecological Observatory Community (GLEON) works to know, predict, and talk lake ecosystem response to world change. Inland Waters 6, 543–554 (2018).

    Article 

    Google Scholar
     

  • Claustre, H., Johnson, Ok. S. & Takeshita, Y. Observing the worldwide ocean with biogeochemical-Argo. Annu. Rev. Mar. Sci. 12, 23–48 (2019).

    Article 

    Google Scholar
     

  • Jankowski, Ok. J., Mejia, F. H., Blaszczak, J. R. & Holtgrieve, G. W. Aquatic ecosystem metabolism as a instrument in environmental administration. Wiley Interdiscip. Rev. Water 8, e1521 (2021).

    Article 

    Google Scholar
     

  • Mao, F. et al. Transferring past the know-how: a socio-technical roadmap for low-cost water sensor community functions. Environ. Sci. Technol. 54, 9145–9158 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Park, J., Kim, Ok. T. & Lee, W. H. Current advances in data and communications know-how (ICT) and sensor know-how for monitoring water high quality. Water 12, 510 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yamazaki, D. et al. MERIT Hydro: a excessive‐decision world hydrography map primarily based on newest topography dataset. Water Resour. Res. 55, 5053–5073 (2019).

    Article 

    Google Scholar
     

  • Lin, P., Pan, M., Wooden, E. F., Yamazaki, D. & Allen, G. H. A brand new vector-based world river community dataset accounting for variable drainage density. Sci. Information 8, 28 (2021).

    Article 

    Google Scholar
     

  • Allen, G. H. & Pavelsky, T. M. World extent of rivers and streams. Science 361, 585–587 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Durand, M. et al. An intercomparison of distant sensing river discharge estimation algorithms from measurements of river top, width, and slope. Water Resour. Res. 52, 4527–4549 (2016).

    Article 

    Google Scholar
     

  • Frasson, R. P. M. et al. Exploring the components controlling the error traits of the floor water and ocean topography mission discharge estimates. Water Resour. Res. 57, e2020WR028519 (2021).

    Article 

    Google Scholar
     

  • Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Fast adjustments to world river suspended sediment flux by people. Science 376, 1447–1452 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Campbell, A. D. et al. A evaluate of carbon monitoring in moist carbon techniques utilizing distant sensing. Environ. Res. Lett. 17, 025009 (2022).

    Article 

    Google Scholar
     

  • Allen, G. H. et al. Similarity of stream width distributions throughout headwater techniques. Nat. Commun. 9, 610 (2018).

    Article 

    Google Scholar
     

  • Rodriguez-Iturbe, I. & Rinaldo, A. Fractal River Basins: Likelihood and Self-organization (Cambridge Univ. Press, 2001). Recreation-changing oeuvre formalizing the construction and performance of river networks.

  • Bertuzzo, E., Helton, A. M., Corridor, Robert, O. & Battin, T. J. Scaling of dissolved natural carbon elimination in river networks. Adv. Water Resour. 110, 136–146 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Marzadri, A., Dee, M. M., Tonina, D., Bellin, A. & Tank, J. L. Position of floor and subsurface processes in scaling N2O emissions alongside riverine networks. Proc. Natl Acad. Sci. USA 114, 4330–4335 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Marzadri, A. et al. World riverine nitrous oxide emissions: the function of small streams and huge rivers. Sci. Whole Environ. 776, 145148 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Botter, G. & Durighetto, N. The stream size length curve: a instrument for characterizing the time variability of the flowing stream size. Water Resour. Res. 56, e2020WR027282 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wollheim, W. M. et al. River community saturation idea: components influencing the steadiness of biogeochemical provide and demand of river networks. Biogeochemistry 141, 503–521 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Durighetto, N., Vingiani, F., Bertassello, L. E., Camporese, M. & Botter, G. Intraseasonal drainage community dynamics in a headwater catchment of the Italian Alps. Water Resour. Res. 56, e2019WR02556 (2020).

    Article 

    Google Scholar
     

  • Montgomery, D. R. & Dietrich, W. E. Supply areas, drainage density, and channel initiation. Water Resour. Res. 25, 1907–1918 (1989).

    Article 

    Google Scholar
     

  • Fatichi, S., Ivanov, V. Y. & Caporali, E. A mechanistic ecohydrological mannequin to analyze advanced interactions in chilly and heat water‐managed environments: 1. Theoretical framework and plot‐scale evaluation. J. Adv. Mannequin. Earth. Syst. 4, M05002 (2012).


    Google Scholar
     

  • Ulseth, A. J. et al. Distinct air–water fuel trade regimes in low- and high-energy streams. Nat. Geosci. 12, 259–263 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Corridor, R. O. in Streams and Ecosystems in a Altering Surroundings (eds. Jones, J. J. & Stanley, E. H.) 151–180 (Educational, 2016).

  • Butman, D. & Raymond, P. A. Important efflux of carbon dioxide from streams and rivers in america. Nat. Geosci. 4, 839–842 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Duvert, C., Butman, D. E., Marx, A., Ribolzi, O. & Hutley, L. B. CO2 evasion alongside streams pushed by groundwater inputs and geomorphic controls. Nat. Geosci. 11, 813–818 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Important methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau. Nat. Geosci. 13, 349–354 (2020).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular