Battin, T. J. et al. The boundless carbon cycle. Nat. Geosci. 2, 598–600 (2009).
Raymond, P. A. et al. World carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).
Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the dimensions of streams and rivers. Nat. Geosci. 8, 696–699 (2015). Vital research conceptualizing (on the premise of a knowledge synthesis) how the sources and magnitude of CO2 evasion flux change alongside a stream–river continuum.
Ciais, P. et al. in Local weather Change 2013 The Bodily Science Foundation. Contribution of Working Group I to the Fifth Evaluation Report of the Intergovernmental Panel on Local weather Change (eds Stocker, T. F. et al.) Ch. 6 (Cambridge Univ. Press, 2013).
Friedlingstein, P. et al. World carbon funds 2021. Earth Syst. Sci. Information 14, 1917–2005 (2022).
Cole, J. J. et al. Plumbing the worldwide carbon cycle: integrating inland waters into the terrestrial carbon funds. Ecosystems 10, 172–185 (2007). A pioneering research exhibiting the function of inland waters for large-scale carbon fluxes and highlighting them as ‘reactors’ somewhat than ‘passive pipes’.
Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a present synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3, 132–142 (2018).
Odum, H. T. Main manufacturing in flowing waters. Limnol. Oceanogr. 1, 102–117 (1956).
Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, 99–118 (2018). A synthesis of the predominant drivers and constraints on metabolic regimes of stream and river ecosystems.
Barnes, A. D. et al. Power flux: the hyperlink between multitrophic biodiversity and ecosystem functioning. Developments Ecol. Evol. 33, 186–197 (2018).
Costanza, R. & Mageau, M. What’s a wholesome ecosystem? Aquat. Ecol. 33, 105–115 (1999).
Blöschl, G. et al. Altering local weather each will increase and reduces European river floods. Nature 573, 108–111 (2019).
Gudmundsson, L. et al. Globally noticed tendencies in imply and excessive river movement attributed to local weather change. Science 371, 1159–1162 (2021).
Yang, X., Pavelsky, T. M. & Allen, G. H. The previous and future of worldwide river ice. Nature 577, 69–73 (2020).
Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
Belletti, B. et al. A couple of million limitations fragment Europe’s rivers. Nature 588, 436–441 (2020).
Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. Excessive-resolution mapping of worldwide floor water and its long-term adjustments. Nature 540, 418–422 (2016).
Cooley, S. W., Ryan, J. C. & Smith, L. C. Human alteration of worldwide floor water storage variability. Nature 591, 78–81 (2021).
Jaramillo, F. & Destouni, G. Native movement regulation and irrigation increase world human water consumption and footprint. Science 350, 1248–1251 (2015).
Quinton, J. N., Govers, G., Oost, Ok. V. & Bardgett, R. D. The influence of agricultural soil erosion on biogeochemical biking. Nat. Geosci. 3, 311–314 (2010).
Mekonnen, M. M. & Hoekstra, A. Y. World anthropogenic phosphorus hundreds to freshwater and related gray water footprints and water air pollution ranges: a excessive‐decision world research. Water Resour. Res. 54, 345–358 (2018).
Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013). The primary research exhibiting the extent to which human actions have altered the magnitude of latest lateral carbon fluxes from land to ocean.
Rüegg, J. et al. Considering like a client: linking aquatic basal metabolism and client dynamics. Limnol. Oceanogr. Lett. 6, 1–17 (2021).
Fernández-Martínez, M. et al. World tendencies in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).
Behrenfeld, M. J. et al. Local weather-driven tendencies in up to date ocean productiveness. Nature 444, 752–755 (2006).
Phillips, J. S. Time‐various responses of lake metabolism to gentle and temperature. Limnol. Oceanogr. 65, 652–666 (2020).
Uehlinger, U. Annual cycle and inter‐annual variability of gross major manufacturing and ecosystem respiration in a floodprone river throughout a 15‐yr interval. Freshw. Biol. 51, 938–950 (2006).
Uehlinger, U. & Naegeli, M. W. Ecosystem metabolism, disturbance, and stability in a prealpine gravel mattress river. J. North Am. Benthol. Soc. 17, 165–178 (1998).
Mulholland, P. J. et al. Inter-biome comparability of things controlling stream metabolism. Freshw. Biol. 46, 1503–1517 (2001).
Roberts, B. J., Mulholland, P. J. & Hill, W. R. A number of scales of temporal variability in ecosystem metabolism charges: outcomes from 2 years of steady monitoring in a forested headwater stream. Ecosystems 10, 588–606 (2007).
Appling, A. P., Corridor, R. O., Yackulic, C. B. & Arroita, M. Overcoming equifinality: leveraging very long time collection for stream metabolism estimation. J. Geophys. Res. Biogeosci. 123, 624–645 (2018).
Appling, A. P. et al. The metabolic regimes of 356 rivers in america. Sci. Information 5, 180292 (2018).
Canadell, M. B. et al. Regimes of major manufacturing and their drivers in Alpine streams. Freshw. Biol. 66, 1449–1463 (2021).
Myrstener, M., Gómez‐Gener, L., Rocher‐Ros, G., Giesler, R. & Sponseller, R. A. Vitamins affect seasonal metabolic patterns and whole productiveness of Arctic streams. Limnol. Oceanogr. 66, S182–S196 (2021).
Savoy, P. et al. Metabolic rhythms in flowing waters: an strategy for classifying river productiveness regimes. Limnol. Oceanogr. 64, 1835–1851 (2019).
Kirk, L., Hensley, R. T., Savoy, P., Heffernan, J. B. & Cohen, M. J. Estimating benthic gentle regimes improves predictions of major manufacturing and constrains light-use effectivity in streams and rivers. Ecosystems 24, 825–839 (2021).
Bernhardt, E. S. et al. Mild and movement regimes regulate the metabolism of rivers. Proc. Natl Acad. Sci. USA 119, e2121976119 (2022).
Savoy, P. & Harvey, J. W. Predicting gentle regime controls on major productiveness throughout CONUS river networks. Geophys. Res. Lett. 48, e2020GL092149 (2021).
Julian, J. P., Stanley, E. H. & Doyle, M. W. Basin-scale penalties of agricultural land use on benthic gentle availability and first manufacturing alongside a sixth-order temperate river. Ecosystems 11, 1091–1105 (2008).
Corridor, R. O. et al. Turbidity, gentle, temperature, and hydropeaking management major productiveness within the Colorado River, Grand Canyon. Limnol. Oceanogr. 60, 512–526 (2015).
Hosen, J. D. et al. Enhancement of major manufacturing throughout drought in a temperate watershed is larger in bigger rivers than headwater streams. Limnol. Oceanogr. 64, 1458–1472 (2019).
Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the worldwide carbon cycle to particular person metabolism. Funct. Ecol. 19, 202–213 (2005).
Demars, B. O. L. et al. Temperature and the metabolic steadiness of streams. Freshw. Biol. 56, 1106–1121 (2011).
Track, C. et al. Continental-scale lower in web major productiveness in streams as a result of local weather warming. Nat. Geosci. 11, 415–420 (2018).
Hood, J. M. et al. Elevated useful resource use effectivity amplifies constructive response of aquatic major manufacturing to experimental warming. Glob. Change Biol. 24, 1069–1084 (2018).
Schindler, D. E., Carpenter, S. R., Cole, J. J., Kitchell, J. F. & Tempo, M. L. Affect of meals internet construction on carbon trade between lakes and the ambiance. Science 277, 248–251 (1997).
Iannucci, F. M., Beneš, J., Medvedeff, A. & Bowden, W. B. Biogeochemical responses over 37 years to manipulation of phosphorus concentrations in an Arctic river: The Higher Kuparuk River Experiment. Hydrol. Course of. 35, e14075 (2021).
Rosemond, A. D. et al. Experimental nutrient additions speed up terrestrial carbon loss from stream ecosystems. Science 347, 1142–1145 (2015). A key research explaining how nutrient extra can speed up terrestrial carbon loss from stream ecosystems.
Arroita, M., Elosegi, A. & Corridor, R. O. Jr Twenty years of each day metabolism present riverine restoration following sewage abatement. Limnol. Oceanogr. 64, 77–92 (2019).
Battin, T. J. et al. Biophysical controls on natural carbon fluxes in fluvial networks. Nat. Geosci. 1, 95–100 (2008). An vital article conceptualizing how bodily and organic processes mix to form metabolic dynamics and carbon fluxes in fluvial networks.
Hoellein, T. J., Bruesewitz, D. A. & Richardson, D. C. Revisiting Odum (1956): a synthesis of aquatic ecosystem metabolism. Limnol. Oceanogr. 58, 2089–2100 (2013).
Marzolf, N. S. & Ardón, M. Ecosystem metabolism in tropical streams and rivers: a evaluate and synthesis. Limnol. Oceanogr. 66, 1627–1638 (2021).
Gounand, I., Little, C. J., Harvey, E. & Altermatt, F. Cross-ecosystem carbon flows connecting ecosystems worldwide. Nat. Commun. 9, 4825 (2018).
Ciais, P. et al. Empirical estimates of regional carbon budgets suggest diminished world soil heterotrophic respiration. Natl Sci. Rev. 8, nwaa145 (2020).
Bauer, J. E. et al. The altering carbon cycle of the coastal ocean. Nature 504, 61–70 (2013). Vital evaluate on the sources, trade and fates of carbon within the coastal ocean and the way human actions have altered the coastal carbon cycle.
Reichert, P., Uehlinger, U. & Acuña, V. Estimating stream metabolism from oxygen concentrations: impact of spatial heterogeneity. J. Geophys. Res. Biogeosci. 114, G03016 (2009).
Koenig, L. E. et al. Emergent productiveness regimes of river networks. Limnol. Oceanogr. Lett. 4, 173–181 (2019).
Rodríguez-Castillo, T., Estévez, E., González-Ferreras, A. M. & Barquín, J. Estimating ecosystem metabolism to complete river networks. Ecosystems 22, 892–911 (2019).
Segatto, P. L., Battin, T. J. & Bertuzzo, E. The metabolic regimes on the scale of a complete stream community unveiled by sensor information and machine studying. Ecosystems 24, 1792–1809 (2021).
Loreau, M., Mouquet, N. & Holt, R. D. Meta‐ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol. Lett. 6, 673–679 (2003).
Mastrandrea, M. D. et al. Steerage Be aware for Lead Authors of the IPCC Fifth Evaluation Report on Constant Remedy of Uncertainties (Intergovernmental Panel on Local weather Change (IPCC), 2010).
Tank, S. E., Fellman, J. B., Hood, E. & Kritzberg, E. S. Past respiration: controls on lateral carbon fluxes throughout the terrestrial‐aquatic interface. Limnol. Oceanogr. Lett. 3, 76–88 (2018). Vital synthesis on the mechanisms and controls of natural and inorganic carbon flows throughout terrestrial–aquatic interfaces.
Aitkenhead, J. A. & McDowell, W. H. Soil C:N ratio as a predictor of annual riverine DOC flux at native and world scales. World Biogeochem. Cycles 14, 127–138 (2000).
Regnier, P., Resplandy, L., Najjar, R. G. & Ciais, P. The land-to-ocean loops of the worldwide carbon cycle. Nature 603, 401–410 (2022).
van Hoek, W. J. et al. Exploring spatially specific adjustments in carbon budgets of worldwide river basins through the twentieth century. Environ. Sci. Technol. 55, 16757–16769 (2021). A worldwide quantitative evaluation of river carbon fluxes within the twentieth century, highlighting the mixed affect of environmental and anthropogenic controls on the long-term patterns of worldwide carbon export.
Abril, G. & Borges, A. V. Concepts and views: carbon leaks from flooded land: do we have to replumb the inland water lively pipe? Biogeosciences 16, 769–784 (2019). Vital evaluate emphasizing the function of flooding for inland water carbon biking on the world scale.
Lauerwald, R., Regnier, P., Guenet, B., Friedlingstein, P. & Ciais, P. How simulations of the land carbon sink are biased by ignoring fluvial carbon transfers: a case research for the Amazon Basin. One Earth 3, 226–236 (2020).
Raymond, P. A., Saiers, J. E. & Sobczak, W. V. Hydrological and biogeochemical controls on watershed dissolved natural matter transport: pulse‐shunt idea. Ecology 97, 5–16 (2016).
Catalán, N., Marcé, R., Kothawala, D. N. & Tranvik, L. J. Natural carbon decomposition charges managed by water retention time throughout inland waters. Nat. Geosci. 9, 501–504 (2016).
Maavara, T., Lauerwald, R., Regnier, P. & Cappellen, P. V. World perturbation of natural carbon biking by river damming. Nat. Commun. 8, 15347 (2017).
Mendonça, R. et al. Natural carbon burial in world lakes and reservoirs. Nat. Commun. 8, 1694–1697 (2017).
Downing, J. A. et al. Sediment natural carbon burial in agriculturally eutrophic impoundments over the past century. World Biogeochem. Cycles 22, GB1018 (2008).
Deemer, B. R. et al. Greenhouse fuel emissions from reservoir water surfaces: a brand new world synthesis. Bioscience 66, 949–964 (2016).
Abril, G. et al. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505, 395–398 (2014).
Dodds, W. Ok. et al. Abiotic controls and temporal variability of river metabolism: multiyear analyses of Mississippi and Chattahoochee River information. Freshw. Sci. 32, 1073–1087 (2013).
Ros, G. R., Sponseller, R. A., Bergström, A. Ok., Myrstener, M. & Giesler, R. Stream metabolism controls diel patterns and evasion of CO2 in Arctic streams. Glob. Change Biol. 26, 1400–1413 (2020).
Rasilo, T., Hutchins, R. H. S., Ruiz-González, C. & Del Giorgio, P. A. Transport and transformation of soil-derived CO2, CH4 and DOC maintain CO2 supersaturation in small boreal streams. Sci. Whole Environ. 579, 902–912 (2017).
Aho, Ok. S., Hosen, J. D., Logozzo, L. A., McGillis, W. R. & Raymond, P. A. Highest charges of gross major productiveness maintained regardless of CO2 depletion in a temperate river community. Limnol. Oceanogr. Lett. 6, 200–206 (2021).
Wehrli, B. Conduits of the carbon cycle. Nature 503, 346–347 (2013).
Sarmiento, J. L. & Sundquist, E. T. Revised funds for the oceanic uptake of anthropogenic carbon dioxide. Nature 356, 589–593 (1992).
Lacroix, F., Ilyina, T., Laruelle, G. G. & Regnier, P. Reconstructing the preindustrial coastal carbon cycle by a world ocean circulation mannequin: was the worldwide continental shelf already each autotrophic and a CO2 sink? Glob. Biogeochem. Cycles 35, e2020GB006603 (2021).
Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L. & Gloor, M. A joint ambiance‐ocean inversion for floor fluxes of carbon dioxide: 1. Strategies and world‐scale fluxes. World Biogeochem. Cycles 21, GB1019 (2007).
Resplandy, L. et al. Revision of worldwide carbon fluxes primarily based on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11, 504–509 (2018).
Lee, L.-C. et al. Uncommon roles of discharge, slope and SOC in DOC transport in small mountainous rivers, Taiwan. Sci. Rep. 9, 1574 (2019).
Reddy, S. Ok. Ok. et al. Export of particulate natural carbon by the mountainous tropical rivers of Western Ghats, India: variations and controls. Sci. Whole Environ. 751, 142115 (2021).
Zhang, X., Tarpley, D. & Sullivan, J. T. Various responses of vegetation phenology to a warming local weather. Geophys. Res. Lett. 34, L19405 (2007).
Pan, Y. et al. A big and protracted carbon sink on this planet’s forests. Science 333, 988–993 (2011).
Heathcote, A. J., Anderson, N. J., Prairie, Y. T., Engstrom, D. R. & del Giorgio, P. A. Giant will increase in carbon burial in northern lakes through the Anthropocene. Nat. Commun. 6, 10016 (2015).
Guillemette, F., Berggren, M., Giorgio, P. Adel. & Lapierre, J.-F. Will increase in terrestrially derived carbon stimulate natural carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat. Commun. 4, 2972 (2013).
Hastie, A., Lauerwald, R., Ciais, P., Papa, F. & Regnier, P. Historic and future contributions of inland waters to the Congo Basin carbon steadiness. Earth Syst. Dyn. 12, 37–62 (2020).
Nakhavali, M. et al. Leaching of dissolved natural carbon from mineral soils performs a big function within the terrestrial carbon steadiness. Glob. Change Biol. 27, 1083–1096 (2021).
Tian, H. et al. World patterns and controls of soil natural carbon dynamics as simulated by a number of terrestrial biosphere fashions: present standing and future instructions. World Biogeochem. Cycles 29, 775–792 (2015).
Öquist, M. G. et al. The total annual carbon steadiness of boreal forests is very delicate to precipitation. Environ. Sci. Technol. Lett. 1, 315–319 (2014).
Jones, J. B.Jr, Stanley, E. H. & Mulholland, P. J. Lengthy‐time period decline in carbon dioxide supersaturation in rivers throughout the contiguous United States. Geophys. Res. Lett. 30, 1495 (2003).
Raymond, P. A. & Oh, N.-H. Long run adjustments of chemical weathering merchandise in rivers closely impacted from acid mine drainage: insights on the influence of coal mining on regional and world carbon and sulfur budgets. Earth Planet. Sci. Lett. 284, 50–56 (2009).
Ran, L. et al. Substantial lower in CO2 emissions from Chinese language inland waters as a result of world change. Nat. Commun. 12, 1730 (2021).
Zarnetske, J. P., Bouda, M., Geophysical, B. A., Saiers, J. & Raymond, P. Generality of hydrologic transport limitation of watershed natural carbon flux throughout ecoregions of america. Geophys. Res. Lett. 45, 11,702–11,711 (2018).
Liu, S. et al. The significance of hydrology in routing terrestrial carbon to the ambiance by way of world streams and rivers. Proc. Natl Acad. Sci. USA 119, e2106322119 (2022).
Nydahl, A. C., Wallin, M. B. & Weyhenmeyer, G. A. No lengthy‐time period tendencies in pCO2 regardless of growing natural carbon concentrations in boreal lakes, streams, and rivers. World Biogeochem. Cycles 31, 985–995 (2017).
Raymond, P. A. & Hamilton, S. Ok. Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans. Limnol. Oceanogr. Lett. 3, 143–155 (2018).
Ulseth, A. J., Bertuzzo, E., Singer, G. A., Schelker, J. & Battin, T. J. Local weather-induced adjustments in spring snowmelt influence ecosystem metabolism and carbon fluxes in an Alpine stream community. Ecosystems 21, 373–390 (2018).
Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow in the direction of rain results in a lower in streamflow. Nat. Clim. Change 4, 583–586 (2014).
Drake, T. W. et al. Mobilization of aged and biolabile soil carbon by tropical deforestation. Nat. Geosci. 12, 541–546 (2019).
Wit, F. et al. The influence of disturbed peatlands on river outgassing in Southeast Asia. Nat. Commun. 6, 10155 (2015).
Moore, S., Gauci, V., Evans, C. D. & Web page, S. E. Fluvial natural carbon losses from a Bornean blackwater river. Biogeosciences 8, 901–909 (2011).
Masese, F. O., Salcedo-Borda, J. S., Gettel, G. M., Irvine, Ok. & McClain, M. E. Affect of catchment land use and seasonality on dissolved natural matter composition and ecosystem metabolism in headwater streams of a Kenyan river. Biogeochemistry 132, 1–22 (2017).
Bernot, M. J. et al. Inter‐regional comparability of land‐use results on stream metabolism. Freshw. Biol. 55, 1874–1890 (2010). Among the many first research exhibiting how land use alters ecosystem metabolism throughout geographic areas.
Griffiths, N. A. et al. Agricultural land use alters the seasonality and magnitude of stream metabolism. Limnol. Oceanogr. 58, 1513–1529 (2013).
Sweeney, B. W. et al. Riparian deforestation, stream narrowing, and lack of stream ecosystem companies. Proc. Natl Acad. Sci. 101, 14132–14137 (2004).
Roley, S. S., Tank, J. L., Griffiths, N. A., Corridor, R. O. Jr & Davis, R. T. The affect of floodplain restoration on whole-stream metabolism in an agricultural stream: insights from a 5-year steady information set. Freshw. Sci. 33, 1043–1059 (2014).
Crawford, J. T., Stanley, E. H., Dornblaser, M. M. & Striegl, R. G. CO2 time collection patterns in contrasting headwater streams of North America. Aquat. Sci. 79, 473–486 (2016).
Blackburn, S. R. & Stanley, E. H. Floods improve carbon dioxide and methane fluxes in agricultural streams. Freshw. Biol. 66, 62–77 (2021).
Robertson, G. P., Paul, E. A. & Harwood, R. R. Greenhouse gases in intensive agriculture: contributions of particular person gases to the radiative forcing of the ambiance. Science 289, 1922–1925 (2000).
Min, S.-Ok., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).
Yin, J. et al. Giant improve in world storm runoff extremes pushed by local weather and anthropogenic adjustments. Nat. Commun. 9, 4389 (2018).
Myhre, G. et al. Smart warmth has considerably affected the worldwide hydrological cycle over the historic interval. Nat. Commun. 9, 1922 (2018).
Messager, M. L. et al. World prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).
Ward, A. S., Wondzell, S. M., Schmadel, N. M. & Herzog, S. P. Local weather change causes river community contraction and disconnection within the H.J. Andrews Experimental Forest, Oregon, USA. Entrance. Water 2, 7 (2020).
Sabater, S., Timoner, X., Borrego, C. & Acuña, V. Stream biofilm responses to movement intermittency: from cells to ecosystems. Entrance. Environ. Sci. 4, 14 (2016).
Gómez-Gener, L., Lupon, A., Laudon, H. & Sponseller, R. A. Drought alters the biogeochemistry of boreal stream networks. Nat. Commun. 11, 1795 (2020).
Marcé, R. et al. Emissions from dry inland waters are a blind spot within the world carbon cycle. Earth Sci. Rev. 188, 240–248 (2019).
Blaszczak, J. R., Delesantro, J. M., City, D. L., Doyle, M. W. & Bernhardt, E. S. Scoured or suffocated: city stream ecosystems oscillate between hydrologic and dissolved oxygen extremes. Limnol. Oceanogr. 64, 877–894 (2019).
Reisinger, A. J. et al. Restoration and resilience of city stream metabolism following Superstorm Sandy and different floods. Ecosphere 8, e01776 (2017).
O’Donnell, B. & Hotchkiss, E. R. Coupling focus‐ and course of‐discharge relationships integrates water chemistry and metabolism in streams. Water Resour. Res. 55, 10179–10190 (2019).
Thellman, A. et al. The ecology of river ice. J. Geophys. Res. Biogeosci. 126, e2021JG006275 (2021).
Maavara, T. et al. River dam impacts on biogeochemical biking. Nat. Rev. Earth Environ. 1, 103–116 (2020).
Rosentreter, J. A. et al. Half of worldwide methane emissions come from extremely variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).
Barros, N. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 4, 593–596 (2011).
Keller, P. S., Marcé, R., Obrador, B. & Koschorreck, M. World carbon funds of reservoirs is overturned by the quantification of drawdown areas. Nat. Geosci. 14, 402–408 (2021).
Calamita, E. et al. Unaccounted CO2 leaks downstream of a big tropical hydroelectric reservoir. Proc. Natl Acad. Sci. USA 118, e2026004118 (2021).
Park, J.-H. et al. Opinions and syntheses: anthropogenic perturbations to carbon fluxes in Asian river techniques – ideas, rising tendencies, and analysis challenges. Biogeosciences 15, 3049–3069 (2018).
Rosamond, M. S., Thuss, S. J. & Schiff, S. L. Dependence of riverine nitrous oxide emissions on dissolved oxygen ranges. Nat. Geosci. 5, 715–718 (2012).
Stanley, E. H. et al. The ecology of methane in streams and rivers: patterns, controls, and world significance. Ecol. Monogr. 86, 146–171 (2016). Key paper highlighting the function of streams and rivers for methane manufacturing and emissions and creating a conceptual framework on the environmental drivers of methane dynamics in fluvial ecosystems.
Breitburg, D. et al. Declining oxygen within the world ocean and coastal waters. Science 359, eaam7240 (2018).
Jane, S. F. et al. Widespread deoxygenation of temperate lakes. Nature 594, 66–70 (2021).
Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W. & Bencala, Ok. E. Retention and transport of vitamins in a 3rd‐order stream in northwestern California: hyporheic processes. Ecology 70, 1893–1905 (1989).
Carter, A. M., Blaszczak, J. R., Heffernan, J. B. & Bernhardt, E. S. Hypoxia dynamics and spatial distribution in a low gradient river. Limnol. Oceanogr. 66, 2251–2265 (2021).
Kadygrov, N. et al. On the potential of the ICOS atmospheric CO2 measurement community for estimating the biogenic CO2 funds of Europe. Atmos. Chem. Phys. 15, 12765–12787 (2015).
Hanson, P. C., Weathers, Ok. C. & Kratz, T. Ok. Networked lake science: how the World Lake Ecological Observatory Community (GLEON) works to know, predict, and talk lake ecosystem response to world change. Inland Waters 6, 543–554 (2018).
Claustre, H., Johnson, Ok. S. & Takeshita, Y. Observing the worldwide ocean with biogeochemical-Argo. Annu. Rev. Mar. Sci. 12, 23–48 (2019).
Jankowski, Ok. J., Mejia, F. H., Blaszczak, J. R. & Holtgrieve, G. W. Aquatic ecosystem metabolism as a instrument in environmental administration. Wiley Interdiscip. Rev. Water 8, e1521 (2021).
Mao, F. et al. Transferring past the know-how: a socio-technical roadmap for low-cost water sensor community functions. Environ. Sci. Technol. 54, 9145–9158 (2020).
Park, J., Kim, Ok. T. & Lee, W. H. Current advances in data and communications know-how (ICT) and sensor know-how for monitoring water high quality. Water 12, 510 (2020).
Yamazaki, D. et al. MERIT Hydro: a excessive‐decision world hydrography map primarily based on newest topography dataset. Water Resour. Res. 55, 5053–5073 (2019).
Lin, P., Pan, M., Wooden, E. F., Yamazaki, D. & Allen, G. H. A brand new vector-based world river community dataset accounting for variable drainage density. Sci. Information 8, 28 (2021).
Allen, G. H. & Pavelsky, T. M. World extent of rivers and streams. Science 361, 585–587 (2018).
Durand, M. et al. An intercomparison of distant sensing river discharge estimation algorithms from measurements of river top, width, and slope. Water Resour. Res. 52, 4527–4549 (2016).
Frasson, R. P. M. et al. Exploring the components controlling the error traits of the floor water and ocean topography mission discharge estimates. Water Resour. Res. 57, e2020WR028519 (2021).
Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Fast adjustments to world river suspended sediment flux by people. Science 376, 1447–1452 (2022).
Campbell, A. D. et al. A evaluate of carbon monitoring in moist carbon techniques utilizing distant sensing. Environ. Res. Lett. 17, 025009 (2022).
Allen, G. H. et al. Similarity of stream width distributions throughout headwater techniques. Nat. Commun. 9, 610 (2018).
Rodriguez-Iturbe, I. & Rinaldo, A. Fractal River Basins: Likelihood and Self-organization (Cambridge Univ. Press, 2001). Recreation-changing oeuvre formalizing the construction and performance of river networks.
Bertuzzo, E., Helton, A. M., Corridor, Robert, O. & Battin, T. J. Scaling of dissolved natural carbon elimination in river networks. Adv. Water Resour. 110, 136–146 (2017).
Marzadri, A., Dee, M. M., Tonina, D., Bellin, A. & Tank, J. L. Position of floor and subsurface processes in scaling N2O emissions alongside riverine networks. Proc. Natl Acad. Sci. USA 114, 4330–4335 (2017).
Marzadri, A. et al. World riverine nitrous oxide emissions: the function of small streams and huge rivers. Sci. Whole Environ. 776, 145148 (2021).
Botter, G. & Durighetto, N. The stream size length curve: a instrument for characterizing the time variability of the flowing stream size. Water Resour. Res. 56, e2020WR027282 (2020).
Wollheim, W. M. et al. River community saturation idea: components influencing the steadiness of biogeochemical provide and demand of river networks. Biogeochemistry 141, 503–521 (2018).
Durighetto, N., Vingiani, F., Bertassello, L. E., Camporese, M. & Botter, G. Intraseasonal drainage community dynamics in a headwater catchment of the Italian Alps. Water Resour. Res. 56, e2019WR02556 (2020).
Montgomery, D. R. & Dietrich, W. E. Supply areas, drainage density, and channel initiation. Water Resour. Res. 25, 1907–1918 (1989).
Fatichi, S., Ivanov, V. Y. & Caporali, E. A mechanistic ecohydrological mannequin to analyze advanced interactions in chilly and heat water‐managed environments: 1. Theoretical framework and plot‐scale evaluation. J. Adv. Mannequin. Earth. Syst. 4, M05002 (2012).
Ulseth, A. J. et al. Distinct air–water fuel trade regimes in low- and high-energy streams. Nat. Geosci. 12, 259–263 (2019).
Corridor, R. O. in Streams and Ecosystems in a Altering Surroundings (eds. Jones, J. J. & Stanley, E. H.) 151–180 (Educational, 2016).
Butman, D. & Raymond, P. A. Important efflux of carbon dioxide from streams and rivers in america. Nat. Geosci. 4, 839–842 (2011).
Duvert, C., Butman, D. E., Marx, A., Ribolzi, O. & Hutley, L. B. CO2 evasion alongside streams pushed by groundwater inputs and geomorphic controls. Nat. Geosci. 11, 813–818 (2018).
Zhang, L. et al. Important methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau. Nat. Geosci. 13, 349–354 (2020).