Macpherson, A. J., de Aguero, M. G. & Ganal-Vonarburg, S. C. How vitamin and the maternal microbiota form the neonatal immune system. Nat. Rev. Immunol. 17, 508–517 (2017).
Kalbermatter, C., Fernandez Trigo, N., Christensen, S. & Ganal-Vonarburg, S. C. Maternal microbiota, adolescence colonization and breast milk drive immune growth within the new child. Entrance. Immunol. 12, 683022 (2021).
Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in adolescence shapes the immune system. Science 352, 539–544 (2016).
Jain, N. The adolescence schooling of the immune system: mothers, microbes and (missed) alternatives. Intestine Microbes 12, 1824564 (2020).
Hornef, M. W. & Torow, N. ‘Layered immunity’ and the ‘neonatal window of alternative’ — timed succession of non-redundant phases to ascertain mucosal host–microbial homeostasis after beginning. Immunology 159, 15–25 (2020).
Torow, N., Marsland, B. J., Hornef, M. W. & Gollwitzer, E. S. Neonatal mucosal immunology. Mucosal Immunol. 10, 5–17 (2017).
Schreurs, R. et al. Human fetal TNF-α-cytokine-producing CD4+ effector reminiscence T cells promote intestinal growth and mediate irritation early in life. Immunity 50, 462–476 (2019).
Stras, S. F. et al. Maturation of the human intestinal immune system happens early in fetal growth. Dev. Cell 51, 357–373 (2019).
Zhang, X. et al. CD4 T cells with effector reminiscence phenotype and performance develop within the sterile surroundings of the fetus. Sci. Transl. Med. 6, 238ra272 (2014).
Tissier, H. Recherches sur la flore intestinale des nourrissons: (état regular et pathologique). Doctoral dissertation, BIU Santé (1900).
He, Q. et al. The meconium microbiota shares extra options with the amniotic fluid microbiota than the maternal fecal and vaginal microbiota. Intestine Microbes 12, 1794266 (2020).
Stinson, L. et al. Comparability of bacterial DNA profiles in mid-trimester amniotic fluid samples from preterm and time period deliveries. Entrance. Microbiol. 11, 415 (2020).
Younge, N. et al. Fetal publicity to the maternal microbiota in people and mice. JCI Perception 4, e127806 (2019).
Stinson, L. F., Boyce, M. C., Payne, M. S. & Keelan, J. A. The not-so-sterile womb: proof that the human fetus is uncovered to micro organism previous to beginning. Entrance. Microbiol. 10, 1124 (2019).
Aagaard, Okay. et al. The placenta harbors a singular microbiome. Sci. Transl. Med. 6, 237ra265 (2014).
D’Argenio, V. The prenatal microbiome: a brand new participant for human well being. Excessive Throughput 7, 38 (2018).
Funkhouser, L. J. & Bordenstein, S. R. Mother is aware of greatest: the universality of maternal microbial transmission. PLoS Biol. 11, e1001631 (2013).
Stinson, L. F., Payne, M. S. & Keelan, J. A. Planting the seed: origins, composition, and postnatal well being significance of the fetal gastrointestinal microbiota. Crit. Rev. Microbiol. 43, 352–369 (2017).
Walker, R. W., Clemente, J. C., Peter, I. & Loos, R. J. F. The prenatal intestine microbiome: are we colonized with micro organism in utero? Pediatr. Obes. 12 (Suppl. 1), 3–17 (2017).
Bolte, E. E., Moorshead, D. & Aagaard, Okay. M. Maternal and adolescence exposures and their potential to affect growth of the microbiome. Genome Med. 14, 4 (2022).
Berg, G. et al. Microbiome definition re-visited: outdated ideas and new challenges. Microbiome 8, 103 (2020).
Blaser, M. J. et al. Classes discovered from the prenatal microbiome controversy. Microbiome 9, 8 (2021). Dialogue in regards to the prenatal microbiome controversy by a number of consultants within the microbiome discipline.
Bushman, F. D. De-discovery of the placenta microbiome. Am. J. Obstet. Gynecol. 220, 213–214 (2019).
Editorial. Microbiome research and “blue whales within the Himalayas”. Lancet Infect. Dis. 18, 925 https://doi.org/10.1016/S1473-3099(18)30503-6 (2018).
Hornef, M. & Penders, J. Does a prenatal bacterial microbiota exist? Mucosal Immunol. 10, 598–601 (2017).
Perez-Muñoz, M. E., Arrieta, M. C., Ramer-Tait, A. E. & Walter, J. A important evaluation of the “sterile womb” and “in utero colonization” hypotheses: implications for analysis on the pioneer toddler microbiome. Microbiome 5, 48 (2017).
Segata, N. No micro organism present in wholesome placentas. Nature 572, 317–318 (2019).
Walter, J. & Hornef, M. W. A philosophical perspective on the prenatal in utero microbiome debate. Microbiome 9, 5 (2021).
de Goffau, M. C. et al. Human placenta has no microbiome however can include potential pathogens. Nature 572, 329–334 (2019). Sequencing examine utilizing strong controls, concluding that there is no such thing as a proof for a placental microbiome.
Kennedy, Okay. M. et al. Fetal meconium doesn’t have a detectable microbiota earlier than beginning. Nat. Microbiol. 6, 865–873 (2021). The one sequencing examine thus far that characterised the microbial populations in human fetuses utilizing meconium samples obtained after C-section, concluding that there is no such thing as a proof for a microbiota.
Kuperman, A. A. et al. Deep microbial evaluation of a number of placentas reveals no proof for a placental microbiome. BJOG 127, 159–169 (2020).
Lauder, A. P. et al. Comparability of placenta samples with contamination controls doesn’t present proof for a definite placenta microbiota. Microbiome 4, 29 (2016).
Leiby, J. S. et al. Lack of detection of a human placenta microbiome in samples from preterm and time period deliveries. Microbiome 6, 196 (2018).
Theis, Okay. R. et al. Does the human placenta delivered at time period have a microbiota? Outcomes of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am. J. Obstet. Gynecol. 220, 267.e1–267.e39 (2019).
Sterpu, I. et al. No proof for a placental microbiome in human pregnancies at time period. Am. J. Obstet. Gynecol. 224, 296.e1–296.e23 (2021).
de Goffau, M. C. et al. Recognizing the reagent microbiome. Nat. Microbiol. 3, 851–853 (2018).
Olomu, I. N. et al. Elimination of “kitome” and “splashome” contamination leads to lack of detection of a singular placental microbiome. BMC Microbiol. 20, 157 (2020).
Salter, S. J. et al. Reagent and laboratory contamination can critically influence sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
Rackaityte, E. et al. Viable bacterial colonization is very restricted within the human gut in utero. Nat. Med. 26, 599–607 (2020). Microbial characterization of fetal samples obtained after vaginal supply, reporting extremely restricted bacterial colonization.
Mishra, A. et al. Microbial publicity throughout early human growth primes fetal immune cells. Cell 184, 3394–3409 (2021). Evaluation of fetal tissues obtained after medical termination of being pregnant within the second trimester and vaginal supply, reporting microbial colonization of the fetus and bacterial priming of fetal immune cells.
Li, Y. et al. In utero human gut harbors distinctive metabolomic options together with bacterial metabolites. JCI Perception 5, e138751 (2020). Characterization of the microbiota in fetuses obtained by vaginal supply, reporting no proof for bacterial colonization.
Lim, E. S., Rodriguez, C. & Holtz, L. R. Amniotic fluid from wholesome time period pregnancies doesn’t harbor a detectable microbial neighborhood. Microbiome 6, 87 (2018).
Liu, Y. et al. Midtrimester amniotic fluid from wholesome pregnancies has no microorganisms utilizing a number of strategies of microbiologic inquiry. Am. J. Obstet. Gynecol. 223, 248.e1–248.e21 (2020).
Rehbinder, E. M. et al. Is amniotic fluid of girls with uncomplicated time period pregnancies freed from micro organism? Am. J. Obstet. Gynecol. 219, 289.e1–289.e12 (2018).
de Goffau, M. C., Charnock-Jones, D. S., Smith, G. C. S. & Parkhill, J. Batch results account for the primary findings of an in utero human intestinal bacterial colonization examine. Microbiome 9, 6 (2021).
Powell, S., Perry, J. & Meikle, D. Microbial contamination of non-disposable devices in otolaryngology out-patients. J. Laryngol. Otol. 117, 122–125 (2003).
Wistrand, C., Soderquist, B. & Sundqvist, A. S. Time-dependent bacterial air contamination of sterile fields in a managed working room surroundings: an experimental intervention examine. J. Hosp. Infect. 110, 97–102 (2021).
Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune growth. Science 351, 1296–1302 (2016). Examine demonstrating that features of prenatal immune growth induced by maternal microbial compounds can happen within the absence of dwell microorganisms within the fetus.
Vuong, H. E. et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586, 281–286 (2020).
Baker, J. M., Chase, D. M. & Herbst-Kralovetz, M. M. Uterine microbiota: residents, vacationers, or invaders? Entrance. Immunol. 9, 208 (2018).
Cherry, S. H., Filler, M. & Harvey, H. Lysozyme content material of amniotic fluid. Am. J. Obstet. Gynecol. 116, 639–642 (1973).
Soto, E. et al. Human β-defensin-2: a pure antimicrobial peptide current in amniotic fluid participates within the host response to microbial invasion of the amniotic cavity. J. Matern. Fetal Neonatal Med. 20, 15–22 (2007).
Reichhardt, M. P. et al. The salivary scavenger and agglutinin in adolescence: numerous roles in amniotic fluid and within the toddler gut. J. Immunol. 193, 5240–5248 (2014).
Sinha, R. et al. Evaluation of variation in microbial neighborhood amplicon sequencing by the Microbiome High quality Management (MBQC) undertaking consortium. Nat. Biotechnol. 35, 1077–1086 (2017).
Grettenberger, C. L. Novel Gloeobacterales spp. from numerous environments throughout the globe. mSphere 6, e0006121 (2021).
Ravel, J. et al. Vaginal microbiome of reproductive-age girls. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4680–4687 (2011).
Megli, C. J. & Coyne, C. B. Infections on the maternal-fetal interface: an outline of pathogenesis and defence. Nat. Rev. Microbiol. 20, 67–82 (2022).
Armistead, B., Oler, E., Adams Waldorf, Okay. & Rajagopal, L. The double lifetime of group B Streptococcus: asymptomatic colonizer and potent pathogen. J. Mol. Biol. 431, 2914–2931 (2019).
Dodd, J. M. & Crowther, C. A. Misoprostol for induction of labour to terminate being pregnant within the second or third trimester for ladies with a fetal anomaly or after intrauterine fetal loss of life. Cochrane Database Syst. Rev. 2010, CD004901 (2010).
Nijman, T. A. et al. Affiliation between an infection and fever in terminations of being pregnant utilizing misoprostol: a retrospective cohort examine. BMC Being pregnant Childbirth 17, 7 (2017).
Rackaityte, E. et al. Corroborating proof refutes batch impact as rationalization for fetal micro organism. Microbiome 9, 10 (2021).
Duar, R. M. et al. Existence in transition: evolution and pure historical past of the genus Lactobacillus. FEMS Microbiol. Rev. 41, S27–S48 (2017).
Dominguez-Bello, M. G. et al. Supply mode shapes the acquisition and construction of the preliminary microbiota throughout a number of physique habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).
Dos Santos, S. J. et al. Early neonatal meconium doesn’t have a demonstrable microbiota decided by use of strong detrimental controls with cpn60-based microbiome profiling. Microbiol. Spectr. 9, e0006721 (2021).
Heida, F. H. et al. Weight shapes the intestinal microbiome in preterm infants: outcomes of a potential observational examine. BMC Microbiol. 21, 219 (2021).
Backhed, F. et al. Dynamics and stabilization of the human intestine microbiome throughout the first 12 months of life. Cell Host Microbe 17, 690–703 (2015).
Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section beginning. Nature 574, 117–121 (2019).
Podlesny, D. & Fricke, W. F. Pressure inheritance and neonatal intestine microbiota growth: a meta-analysis. Int. J. Med. Microbiol. 311, 151483 (2021).
Bajorek, S. et al. Preliminary microbial neighborhood of the neonatal abdomen instantly after beginning. Intestine Microbes 10, 289–297 (2019).
Kim, S. M. et al. Gastric fluid versus amniotic fluid evaluation for the identification of intra-amniotic an infection resulting from Ureaplasma species. J. Matern. Fetal Neonatal Med. 29, 2579–2587 (2016).
Martin, R. et al. Early-life occasions, together with mode of supply and kind of feeding, siblings and gender, form the creating intestine microbiota. PLoS One 11, e0158498 (2016).
Yassour, M. et al. Pure historical past of the toddler intestine microbiome and influence of antibiotic therapy on bacterial pressure range and stability. Sci. Transl. Med. 8, 343ra381 (2016).
Mitchell, C. M. et al. Supply mode impacts stability of early toddler intestine microbiota. Cell Rep. Med. 1, 100156 (2020).
Ferretti, P. et al. Mom-to-infant microbial transmission from totally different physique websites shapes the creating toddler intestine microbiome. Cell Host Microbe 24, 133–145 (2018).
Yassour, M. et al. Pressure-level evaluation of mother-to-child bacterial transmission throughout the first few months of life. Cell Host Microbe 24, 146–154 (2018).
Korpela, Okay. et al. Maternal fecal microbiota transplantation in cesarean-born infants quickly restores regular intestine microbial growth: a proof-of-concept examine. Cell 183, 324–334 (2020).
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Easy statistical identification and elimination of contaminant sequences in marker-gene and metagenomics knowledge. Microbiome 6, 226 (2018).
Dyrhovden, R. et al. Managing contamination and numerous bacterial hundreds in 16S rRNA deep sequencing of medical samples: implications of the regulation of small numbers. mBio 12, e0059821 (2021).
Laurence, M., Hatzis, C. & Brash, D. E. Frequent contaminants in next-generation sequencing that hinder discovery of low-abundance microbes. PLoS One 9, e97876 (2014).
Learn, S. J. Restoration efficiences on nucleic acid extraction kits as measured by quantitative LightCycler PCR. Mol. Pathol. 54, 86–90 (2001).
Walker, S. P. et al. Non-specific amplification of human DNA is a significant problem for 16S rRNA gene sequence evaluation. Sci. Rep. 10, 16356 (2020).
Cebra, J. J., Periwal, S. B., Lee, G., Lee, F. & Shroff, Okay. E. Growth and upkeep of the gut-associated lymphoid tissue (GALT): the roles of enteric micro organism and viruses. Dev. Immunol. 6, 13–18 (1998).
Gaboriau-Routhiau, V. et al. The important thing function of segmented filamentous micro organism within the coordinated maturation of intestine helper T cell responses. Immunity 31, 677–689 (2009).
Wesemann, D. R. et al. Microbial colonization influences early B-lineage growth within the intestine lamina propria. Nature 501, 112–115 (2013).
Li, H. et al. Mucosal or systemic microbiota exposures form the B cell repertoire. Nature 584, 274–278 (2020).
Bacher, P. et al. Human anti-fungal Th17 immunity and pathology depend on cross-reactivity towards Candida albicans. Cell 176, 1340–1355 (2019).
Kabbert, J. et al. Excessive microbiota reactivity of grownup human intestinal IgA requires somatic mutations. J. Exp. Med. 217, e20200275 (2020).
Arpaia, N. et al. Metabolites produced by commensal micro organism promote peripheral regulatory T-cell technology. Nature 504, 451–455 (2013).
McGovern, N. et al. Human fetal dendritic cells promote prenatal T-cell immune suppression by arginase-2. Nature 546, 662–666 (2017).
Rechavi, E. et al. Well timed and spatially regulated maturation of B and T cell repertoire throughout human fetal growth. Sci. Transl. Med. 7, 276ra225 (2015).
Casas, R. & Bjorksten, B. Detection of Fel d 1-immunoglobulin G immune complexes in twine blood and sera from allergic and non-allergic moms. Pediatr. Allergy Immunol. 12, 59–64 (2001).
Szepfalusi, Z. et al. Transplacental priming of the human immune system with environmental allergens can happen early in gestation. J. Allergy Clin. Immunol. 106, 530–536 (2000).
Vuillermin, P. J. et al. Maternal carriage of Prevotella throughout being pregnant associates with safety towards meals allergy within the offspring. Nat. Commun. 11, 1452 (2020).
Ganal-Vonarburg, S. C., Hornef, M. W. & Macpherson, A. J. Microbial–host molecular alternate and its purposeful penalties in early mammalian life. Science 368, 604–607 (2020).
Lockhart, P. B. et al. Bacteremia related to toothbrushing and dental extraction. Circulation 117, 3118–3125 (2008).
Fisher, R. A., Gollan, B. & Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15, 453–464 (2017).
De Boeck, I. et al. Lactobacilli Have a Area of interest within the Human Nostril. Cell Rep. 31, 107674 (2020).
Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. Host interactions of probiotic bacterial floor molecules: comparability with commensals and pathogens. Nat. Rev. Microbiol. 8, 171–184 (2010).
Collins, J. et al. Fibrinogen-binding and platelet-aggregation actions of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein. Mol. Microbiol. 85, 862–877 (2012).
Kankainen, M. et al. Comparative genomic evaluation of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl Acad. Sci. USA 106, 17193–17198 (2009).
Rampersaud, R. et al. Inerolysin, a cholesterol-dependent cytolysin produced by Lactobacillus iners. J. Bacteriol. 193, 1034–1041 (2011).
Wuyts, S. et al. Giant-scale phylogenomics of the Lactobacillus casei group highlights taxonomic inconsistencies and divulges novel clade-associated options. mSystems 2, e00061-17 (2017).
Weinberg, E. D. The Lactobacillus anomaly: whole iron abstinence. Perspect. Biol. Med. 40, 578–583 (1997).
Hazards, E. Po. B. et al. Replace of the listing of QPS-recommended organic brokers deliberately added to meals or feed as notified to EFSA 7: suitability of taxonomic items notified to EFSA till September 2017. EFSA J. 16, e05131 (2018).
Cannon, J. P., Lee, T. A., Bolanos, J. T. & Danziger, L. H. Pathogenic relevance of Lactobacillus: a retrospective assessment of over 200 instances. Eur. J. Clin. Microbiol. Infect. Dis. 24, 31–40 (2005).
Richardson, E. J. et al. Gene alternate drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).
Gordon, R. J. & Lowy, F. D. Pathogenesis of methicillin-resistant Staphylococcus aureus an infection. Clin. Infect. Dis. 46 (Suppl. 5), S350–359 (2008).
Otto, M. Staphylococcus aureus toxins. Curr. Opin. Microbiol. 17, 32–37 (2014).
Powers, M. E. & Bubeck Wardenburg, J. Igniting the hearth: Staphylococcus aureus virulence elements within the pathogenesis of sepsis. PLoS Pathog. 10, e1003871 (2014).
Healy, C. M., Baker, C. J., Palazzi, D. L., Campbell, J. R. & Edwards, M. S. Distinguishing true coagulase-negative Staphylococcus infections from contaminants within the neonatal intensive care unit. J. Perinatol. 33, 52–58 (2013).
Michels, R., Final, Okay., Becker, S. L. & Papan, C. Replace on coagulase-negative staphylococci–what the clinician ought to know. Microorganisms 9, 830 (2021).
Marchant, E. A., Boyce, G. Okay., Sadarangani, M. & Lavoie, P. M. Neonatal sepsis resulting from coagulase-negative staphylococci. Clin. Dev. Immunol. 2013, 586076 (2013).
Zhen, X., Lundborg, C. S., Solar, X., Hu, X. & Dong, H. Financial burden of antibiotic resistance in ESKAPE organisms: a scientific assessment. Antimicrob. Resist. Infect. Management 8, 137 (2019).
Kamal, S. M., Simpson, D. J., Wang, Z., Ganzle, M. & Romling, U. Horizontal transmission of stress resistance genes form the ecology of beta- and gamma-proteobacteria. Entrance. Microbiol. 12, 696522 (2021).
Kramer, A., Schwebke, I. & Kampf, G. How lengthy do nosocomial pathogens persist on inanimate surfaces? A scientific assessment. BMC Infect. Dis. 6, 130 (2006).
Neely, A. N. & Maley, M. P. Survival of enterococci and staphylococci on hospital materials and plastic. J. Clin. Microbiol. 38, 724–726 (2000).
Bizzarro, M. J. et al. Neonatal sepsis 2004–2013: the rise and fall of coagulase-negative staphylococci. J. Pediatr. 166, 1193–1199 (2015).
Dong, Y., Speer, C. P. & Glaser, Okay. Past sepsis: Staphylococcus epidermidis is an underestimated however vital contributor to neonatal morbidity. Virulence 9, 621–633 (2018).
Glaser, M. A., Hughes, L. M., Jnah, A. & Newberry, D. Neonatal sepsis: a assessment of pathophysiology and present administration methods. Adv. Neonatal Care 21, 49–60 (2021).
Nan, C. et al. Maternal group B Streptococcus-related stillbirth: a scientific assessment. BJOG 122, 1437–1445 (2015).
Vazquez-Boland, J. A., Krypotou, E. & Scortti, M. Listeria placental an infection. mBio 8, e00949–17 (2017).
DiGiulio, D. B. et al. Microbial invasion of the amniotic cavity in preeclampsia as assessed by cultivation and sequence-based strategies. J. Perinat. Med. 38, 503–513 (2010).
DiGiulio, D. B. et al. Microbial prevalence, range and abundance in amniotic fluid throughout preterm labor: a molecular and culture-based investigation. PLoS One 3, e3056 (2008). Sequencing examine of amniotic fluid of 166 girls in preterm labour with PCR and tradition that confirmed near-complete constructive correlation of bacterial detection with neonatal morbidity and mortality.
DiGiulio, D. B. et al. Prevalence and variety of microbes within the amniotic fluid, the fetal inflammatory response, and being pregnant final result in girls with preterm pre-labor rupture of membranes. Am. J. Reprod. Immunol. 64, 38–57 (2010).
DiGiulio, D. B. et al. Microbial invasion of the amniotic cavity in pregnancies with small-for-gestational-age fetuses. J. Perinat. Med. 38, 495–502 (2010).
Enders, G., Daiminger, A., Bader, U., Exler, S. & Enders, M. Intrauterine transmission and medical final result of 248 pregnancies with main cytomegalovirus an infection in relation to gestational age. J. Clin. Virol. 52, 244–246 (2011).
Luckey, T. D. Germfree Life and Gnotobiology (Tutorial Press, 1963).
Rasmussen, S. A., Jamieson, D. J., Honein, M. A. & Petersen, L. R. Zika virus and beginning defects–reviewing the proof for causality. N. Engl. J. Med. 374, 1981–1987 (2016).
Falk, P. G., Hooper, L. V., Midtvedt, T. & Gordon, J. I. Creating and sustaining the gastrointestinal ecosystem: what we all know and must know from gnotobiology. Microbiol. Mol. Biol. Rev. 62, 1157–1170 (1998).
Gordon, H. A. & Pesti, L. The gnotobiotic animal as a instrument within the examine of host microbial relationships. Bacteriol. Rev. 35, 390–429 (1971).
Hooper, L. V. et al. Molecular evaluation of commensal host-microbial relationships within the gut. Science 291, 881–884 (2001).
Wostman, B. S. Germfree and Gnotobiotic Animal Fashions. Background and Functions (CRC Press, 1996).
Arvidsson, C., Hallen, A. & Backhed, F. Producing and analyzing germ-free mice. Curr. Protoc. Mouse Biol. 2, 307–316 (2012).
Carter, P. B., Norin, E. & Swennes, A. G. Gnotobiotics and the microbiome. In The Laboratory Rat third edn (eds Suckow, M. A. et al.) Ch. 21, 827–848 (2020).
Qv, L. et al. Strategies for institution and upkeep of germ-free rat fashions. Entrance. Microbiol. 11, 1148 (2020).
Schoeb, T. R. & Eaton, Okay. A. Gnotobiotics (Tutorial Press, 2017).
Jervis-Bardy, J. et al. Deriving correct microbiota profiles from human samples with low bacterial content material by post-sequencing processing of Illumina MiSeq knowledge. Microbiome 3, 19 (2015).
Saffarian, A. et al. Crypt- and mucosa-associated core microbiotas in people and their alteration in colon most cancers sufferers. mBio 10, e01315-19 (2019).
Jorissen, J. et al. Case–management microbiome examine of power otitis media with effusion in youngsters factors at Streptococcus salivarius as a pathobiont-inhibiting species. mSystems 6, e00056-21 (2021).
Salzberg, S. Does the placenta have a bacterial microbiome? Forbes (1 June 2020); https://www.forbes.com/websites/stevensalzberg/2020/06/01/does-the-placenta-have-a-bacterial-microbiome/?sh=7ae092ea250b.
Jost, T., Lacroix, C., Braegger, C. & Chassard, C. Evaluation of bacterial range in breast milk utilizing culture-dependent and culture-independent approaches. Br. J. Nutr. 110, 1253–1262 (2013).
Treven, P. et al. Analysis of human milk microbiota by 16S rRNA gene next-generation sequencing (NGS) and cultivation/MALDI-TOF mass spectrometry identification. Entrance. Microbiol. 10, 2612 (2019).
Bihl, S. et al. When to suspect contamination relatively than colonization—classes from a putative fetal sheep microbiome. Intestine Microbes 14, 2005751 (2022).
Kennedy, Okay. M. et al. Over-celling fetal microbial publicity. Cell 184, 5839–5841 (2021).
Eisenhofer, R. et al. Contamination in low microbial biomass microbiome research: points and suggestions. Tendencies Microbiol. 27, 105–117 (2019).