Wednesday, February 8, 2023
HomeNatureQuestioning the fetal microbiome illustrates pitfalls of low-biomass microbial research

Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial research


  • Macpherson, A. J., de Aguero, M. G. & Ganal-Vonarburg, S. C. How vitamin and the maternal microbiota form the neonatal immune system. Nat. Rev. Immunol. 17, 508–517 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kalbermatter, C., Fernandez Trigo, N., Christensen, S. & Ganal-Vonarburg, S. C. Maternal microbiota, adolescence colonization and breast milk drive immune growth within the new child. Entrance. Immunol. 12, 683022 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in adolescence shapes the immune system. Science 352, 539–544 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jain, N. The adolescence schooling of the immune system: mothers, microbes and (missed) alternatives. Intestine Microbes 12, 1824564 (2020).

    Article 

    Google Scholar
     

  • Hornef, M. W. & Torow, N. ‘Layered immunity’ and the ‘neonatal window of alternative’ — timed succession of non-redundant phases to ascertain mucosal host–microbial homeostasis after beginning. Immunology 159, 15–25 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Torow, N., Marsland, B. J., Hornef, M. W. & Gollwitzer, E. S. Neonatal mucosal immunology. Mucosal Immunol. 10, 5–17 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schreurs, R. et al. Human fetal TNF-α-cytokine-producing CD4+ effector reminiscence T cells promote intestinal growth and mediate irritation early in life. Immunity 50, 462–476 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Stras, S. F. et al. Maturation of the human intestinal immune system happens early in fetal growth. Dev. Cell 51, 357–373 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. CD4 T cells with effector reminiscence phenotype and performance develop within the sterile surroundings of the fetus. Sci. Transl. Med. 6, 238ra272 (2014).

    Article 

    Google Scholar
     

  • Tissier, H. Recherches sur la flore intestinale des nourrissons: (état regular et pathologique). Doctoral dissertation, BIU Santé (1900).

  • He, Q. et al. The meconium microbiota shares extra options with the amniotic fluid microbiota than the maternal fecal and vaginal microbiota. Intestine Microbes 12, 1794266 (2020).

    Article 

    Google Scholar
     

  • Stinson, L. et al. Comparability of bacterial DNA profiles in mid-trimester amniotic fluid samples from preterm and time period deliveries. Entrance. Microbiol. 11, 415 (2020).

    Article 

    Google Scholar
     

  • Younge, N. et al. Fetal publicity to the maternal microbiota in people and mice. JCI Perception 4, e127806 (2019).

    Article 

    Google Scholar
     

  • Stinson, L. F., Boyce, M. C., Payne, M. S. & Keelan, J. A. The not-so-sterile womb: proof that the human fetus is uncovered to micro organism previous to beginning. Entrance. Microbiol. 10, 1124 (2019).

    Article 

    Google Scholar
     

  • Aagaard, Okay. et al. The placenta harbors a singular microbiome. Sci. Transl. Med. 6, 237ra265 (2014).


    Google Scholar
     

  • D’Argenio, V. The prenatal microbiome: a brand new participant for human well being. Excessive Throughput 7, 38 (2018).

    Article 

    Google Scholar
     

  • Funkhouser, L. J. & Bordenstein, S. R. Mother is aware of greatest: the universality of maternal microbial transmission. PLoS Biol. 11, e1001631 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Stinson, L. F., Payne, M. S. & Keelan, J. A. Planting the seed: origins, composition, and postnatal well being significance of the fetal gastrointestinal microbiota. Crit. Rev. Microbiol. 43, 352–369 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Walker, R. W., Clemente, J. C., Peter, I. & Loos, R. J. F. The prenatal intestine microbiome: are we colonized with micro organism in utero? Pediatr. Obes. 12 (Suppl. 1), 3–17 (2017).

    Article 

    Google Scholar
     

  • Bolte, E. E., Moorshead, D. & Aagaard, Okay. M. Maternal and adolescence exposures and their potential to affect growth of the microbiome. Genome Med. 14, 4 (2022).

    Article 

    Google Scholar
     

  • Berg, G. et al. Microbiome definition re-visited: outdated ideas and new challenges. Microbiome 8, 103 (2020).

    Article 

    Google Scholar
     

  • Blaser, M. J. et al. Classes discovered from the prenatal microbiome controversy. Microbiome 9, 8 (2021). Dialogue in regards to the prenatal microbiome controversy by a number of consultants within the microbiome discipline.

    Article 

    Google Scholar
     

  • Bushman, F. D. De-discovery of the placenta microbiome. Am. J. Obstet. Gynecol. 220, 213–214 (2019).

    Article 

    Google Scholar
     

  • Editorial. Microbiome research and “blue whales within the Himalayas”. Lancet Infect. Dis. 18, 925 https://doi.org/10.1016/S1473-3099(18)30503-6 (2018).

  • Hornef, M. & Penders, J. Does a prenatal bacterial microbiota exist? Mucosal Immunol. 10, 598–601 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Perez-Muñoz, M. E., Arrieta, M. C., Ramer-Tait, A. E. & Walter, J. A important evaluation of the “sterile womb” and “in utero colonization” hypotheses: implications for analysis on the pioneer toddler microbiome. Microbiome 5, 48 (2017).

    Article 

    Google Scholar
     

  • Segata, N. No micro organism present in wholesome placentas. Nature 572, 317–318 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Walter, J. & Hornef, M. W. A philosophical perspective on the prenatal in utero microbiome debate. Microbiome 9, 5 (2021).

    Article 

    Google Scholar
     

  • de Goffau, M. C. et al. Human placenta has no microbiome however can include potential pathogens. Nature 572, 329–334 (2019). Sequencing examine utilizing strong controls, concluding that there is no such thing as a proof for a placental microbiome.

    Article 
    ADS 

    Google Scholar
     

  • Kennedy, Okay. M. et al. Fetal meconium doesn’t have a detectable microbiota earlier than beginning. Nat. Microbiol. 6, 865–873 (2021). The one sequencing examine thus far that characterised the microbial populations in human fetuses utilizing meconium samples obtained after C-section, concluding that there is no such thing as a proof for a microbiota.

    Article 
    CAS 

    Google Scholar
     

  • Kuperman, A. A. et al. Deep microbial evaluation of a number of placentas reveals no proof for a placental microbiome. BJOG 127, 159–169 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lauder, A. P. et al. Comparability of placenta samples with contamination controls doesn’t present proof for a definite placenta microbiota. Microbiome 4, 29 (2016).

    Article 

    Google Scholar
     

  • Leiby, J. S. et al. Lack of detection of a human placenta microbiome in samples from preterm and time period deliveries. Microbiome 6, 196 (2018).

    Article 

    Google Scholar
     

  • Theis, Okay. R. et al. Does the human placenta delivered at time period have a microbiota? Outcomes of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am. J. Obstet. Gynecol. 220, 267.e1–267.e39 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sterpu, I. et al. No proof for a placental microbiome in human pregnancies at time period. Am. J. Obstet. Gynecol. 224, 296.e1–296.e23 (2021).

    Article 
    CAS 

    Google Scholar
     

  • de Goffau, M. C. et al. Recognizing the reagent microbiome. Nat. Microbiol. 3, 851–853 (2018).

    Article 

    Google Scholar
     

  • Olomu, I. N. et al. Elimination of “kitome” and “splashome” contamination leads to lack of detection of a singular placental microbiome. BMC Microbiol. 20, 157 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Salter, S. J. et al. Reagent and laboratory contamination can critically influence sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    Article 

    Google Scholar
     

  • Rackaityte, E. et al. Viable bacterial colonization is very restricted within the human gut in utero. Nat. Med. 26, 599–607 (2020). Microbial characterization of fetal samples obtained after vaginal supply, reporting extremely restricted bacterial colonization.

    Article 
    CAS 

    Google Scholar
     

  • Mishra, A. et al. Microbial publicity throughout early human growth primes fetal immune cells. Cell 184, 3394–3409 (2021). Evaluation of fetal tissues obtained after medical termination of being pregnant within the second trimester and vaginal supply, reporting microbial colonization of the fetus and bacterial priming of fetal immune cells.

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. In utero human gut harbors distinctive metabolomic options together with bacterial metabolites. JCI Perception 5, e138751 (2020). Characterization of the microbiota in fetuses obtained by vaginal supply, reporting no proof for bacterial colonization.

    Article 

    Google Scholar
     

  • Lim, E. S., Rodriguez, C. & Holtz, L. R. Amniotic fluid from wholesome time period pregnancies doesn’t harbor a detectable microbial neighborhood. Microbiome 6, 87 (2018).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Midtrimester amniotic fluid from wholesome pregnancies has no microorganisms utilizing a number of strategies of microbiologic inquiry. Am. J. Obstet. Gynecol. 223, 248.e1–248.e21 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rehbinder, E. M. et al. Is amniotic fluid of girls with uncomplicated time period pregnancies freed from micro organism? Am. J. Obstet. Gynecol. 219, 289.e1–289.e12 (2018).

    Article 

    Google Scholar
     

  • de Goffau, M. C., Charnock-Jones, D. S., Smith, G. C. S. & Parkhill, J. Batch results account for the primary findings of an in utero human intestinal bacterial colonization examine. Microbiome 9, 6 (2021).

    Article 

    Google Scholar
     

  • Powell, S., Perry, J. & Meikle, D. Microbial contamination of non-disposable devices in otolaryngology out-patients. J. Laryngol. Otol. 117, 122–125 (2003).

    Article 

    Google Scholar
     

  • Wistrand, C., Soderquist, B. & Sundqvist, A. S. Time-dependent bacterial air contamination of sterile fields in a managed working room surroundings: an experimental intervention examine. J. Hosp. Infect. 110, 97–102 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune growth. Science 351, 1296–1302 (2016). Examine demonstrating that features of prenatal immune growth induced by maternal microbial compounds can happen within the absence of dwell microorganisms within the fetus.

    Article 
    ADS 

    Google Scholar
     

  • Vuong, H. E. et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586, 281–286 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baker, J. M., Chase, D. M. & Herbst-Kralovetz, M. M. Uterine microbiota: residents, vacationers, or invaders? Entrance. Immunol. 9, 208 (2018).

    Article 

    Google Scholar
     

  • Cherry, S. H., Filler, M. & Harvey, H. Lysozyme content material of amniotic fluid. Am. J. Obstet. Gynecol. 116, 639–642 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Soto, E. et al. Human β-defensin-2: a pure antimicrobial peptide current in amniotic fluid participates within the host response to microbial invasion of the amniotic cavity. J. Matern. Fetal Neonatal Med. 20, 15–22 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Reichhardt, M. P. et al. The salivary scavenger and agglutinin in adolescence: numerous roles in amniotic fluid and within the toddler gut. J. Immunol. 193, 5240–5248 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sinha, R. et al. Evaluation of variation in microbial neighborhood amplicon sequencing by the Microbiome High quality Management (MBQC) undertaking consortium. Nat. Biotechnol. 35, 1077–1086 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Grettenberger, C. L. Novel Gloeobacterales spp. from numerous environments throughout the globe. mSphere 6, e0006121 (2021).

    Article 

    Google Scholar
     

  • Ravel, J. et al. Vaginal microbiome of reproductive-age girls. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4680–4687 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Megli, C. J. & Coyne, C. B. Infections on the maternal-fetal interface: an outline of pathogenesis and defence. Nat. Rev. Microbiol. 20, 67–82 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Armistead, B., Oler, E., Adams Waldorf, Okay. & Rajagopal, L. The double lifetime of group B Streptococcus: asymptomatic colonizer and potent pathogen. J. Mol. Biol. 431, 2914–2931 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dodd, J. M. & Crowther, C. A. Misoprostol for induction of labour to terminate being pregnant within the second or third trimester for ladies with a fetal anomaly or after intrauterine fetal loss of life. Cochrane Database Syst. Rev. 2010, CD004901 (2010).


    Google Scholar
     

  • Nijman, T. A. et al. Affiliation between an infection and fever in terminations of being pregnant utilizing misoprostol: a retrospective cohort examine. BMC Being pregnant Childbirth 17, 7 (2017).

    Article 

    Google Scholar
     

  • Rackaityte, E. et al. Corroborating proof refutes batch impact as rationalization for fetal micro organism. Microbiome 9, 10 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Duar, R. M. et al. Existence in transition: evolution and pure historical past of the genus Lactobacillus. FEMS Microbiol. Rev. 41, S27–S48 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Dominguez-Bello, M. G. et al. Supply mode shapes the acquisition and construction of the preliminary microbiota throughout a number of physique habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Dos Santos, S. J. et al. Early neonatal meconium doesn’t have a demonstrable microbiota decided by use of strong detrimental controls with cpn60-based microbiome profiling. Microbiol. Spectr. 9, e0006721 (2021).

    Article 

    Google Scholar
     

  • Heida, F. H. et al. Weight shapes the intestinal microbiome in preterm infants: outcomes of a potential observational examine. BMC Microbiol. 21, 219 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Backhed, F. et al. Dynamics and stabilization of the human intestine microbiome throughout the first 12 months of life. Cell Host Microbe 17, 690–703 (2015).

    Article 

    Google Scholar
     

  • Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section beginning. Nature 574, 117–121 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Podlesny, D. & Fricke, W. F. Pressure inheritance and neonatal intestine microbiota growth: a meta-analysis. Int. J. Med. Microbiol. 311, 151483 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bajorek, S. et al. Preliminary microbial neighborhood of the neonatal abdomen instantly after beginning. Intestine Microbes 10, 289–297 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. M. et al. Gastric fluid versus amniotic fluid evaluation for the identification of intra-amniotic an infection resulting from Ureaplasma species. J. Matern. Fetal Neonatal Med. 29, 2579–2587 (2016).

    CAS 

    Google Scholar
     

  • Martin, R. et al. Early-life occasions, together with mode of supply and kind of feeding, siblings and gender, form the creating intestine microbiota. PLoS One 11, e0158498 (2016).

    Article 

    Google Scholar
     

  • Yassour, M. et al. Pure historical past of the toddler intestine microbiome and influence of antibiotic therapy on bacterial pressure range and stability. Sci. Transl. Med. 8, 343ra381 (2016).

    Article 

    Google Scholar
     

  • Mitchell, C. M. et al. Supply mode impacts stability of early toddler intestine microbiota. Cell Rep. Med. 1, 100156 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ferretti, P. et al. Mom-to-infant microbial transmission from totally different physique websites shapes the creating toddler intestine microbiome. Cell Host Microbe 24, 133–145 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yassour, M. et al. Pressure-level evaluation of mother-to-child bacterial transmission throughout the first few months of life. Cell Host Microbe 24, 146–154 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Korpela, Okay. et al. Maternal fecal microbiota transplantation in cesarean-born infants quickly restores regular intestine microbial growth: a proof-of-concept examine. Cell 183, 324–334 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Easy statistical identification and elimination of contaminant sequences in marker-gene and metagenomics knowledge. Microbiome 6, 226 (2018).

    Article 

    Google Scholar
     

  • Dyrhovden, R. et al. Managing contamination and numerous bacterial hundreds in 16S rRNA deep sequencing of medical samples: implications of the regulation of small numbers. mBio 12, e0059821 (2021).

    Article 

    Google Scholar
     

  • Laurence, M., Hatzis, C. & Brash, D. E. Frequent contaminants in next-generation sequencing that hinder discovery of low-abundance microbes. PLoS One 9, e97876 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Learn, S. J. Restoration efficiences on nucleic acid extraction kits as measured by quantitative LightCycler PCR. Mol. Pathol. 54, 86–90 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Walker, S. P. et al. Non-specific amplification of human DNA is a significant problem for 16S rRNA gene sequence evaluation. Sci. Rep. 10, 16356 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cebra, J. J., Periwal, S. B., Lee, G., Lee, F. & Shroff, Okay. E. Growth and upkeep of the gut-associated lymphoid tissue (GALT): the roles of enteric micro organism and viruses. Dev. Immunol. 6, 13–18 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Gaboriau-Routhiau, V. et al. The important thing function of segmented filamentous micro organism within the coordinated maturation of intestine helper T cell responses. Immunity 31, 677–689 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wesemann, D. R. et al. Microbial colonization influences early B-lineage growth within the intestine lamina propria. Nature 501, 112–115 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, H. et al. Mucosal or systemic microbiota exposures form the B cell repertoire. Nature 584, 274–278 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bacher, P. et al. Human anti-fungal Th17 immunity and pathology depend on cross-reactivity towards Candida albicans. Cell 176, 1340–1355 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kabbert, J. et al. Excessive microbiota reactivity of grownup human intestinal IgA requires somatic mutations. J. Exp. Med. 217, e20200275 (2020).

    Article 

    Google Scholar
     

  • Arpaia, N. et al. Metabolites produced by commensal micro organism promote peripheral regulatory T-cell technology. Nature 504, 451–455 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McGovern, N. et al. Human fetal dendritic cells promote prenatal T-cell immune suppression by arginase-2. Nature 546, 662–666 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rechavi, E. et al. Well timed and spatially regulated maturation of B and T cell repertoire throughout human fetal growth. Sci. Transl. Med. 7, 276ra225 (2015).

    Article 

    Google Scholar
     

  • Casas, R. & Bjorksten, B. Detection of Fel d 1-immunoglobulin G immune complexes in twine blood and sera from allergic and non-allergic moms. Pediatr. Allergy Immunol. 12, 59–64 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Szepfalusi, Z. et al. Transplacental priming of the human immune system with environmental allergens can happen early in gestation. J. Allergy Clin. Immunol. 106, 530–536 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Vuillermin, P. J. et al. Maternal carriage of Prevotella throughout being pregnant associates with safety towards meals allergy within the offspring. Nat. Commun. 11, 1452 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ganal-Vonarburg, S. C., Hornef, M. W. & Macpherson, A. J. Microbial–host molecular alternate and its purposeful penalties in early mammalian life. Science 368, 604–607 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lockhart, P. B. et al. Bacteremia related to toothbrushing and dental extraction. Circulation 117, 3118–3125 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Fisher, R. A., Gollan, B. & Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15, 453–464 (2017).

    Article 
    CAS 

    Google Scholar
     

  • De Boeck, I. et al. Lactobacilli Have a Area of interest within the Human Nostril. Cell Rep. 31, 107674 (2020).

    Article 

    Google Scholar
     

  • Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. Host interactions of probiotic bacterial floor molecules: comparability with commensals and pathogens. Nat. Rev. Microbiol. 8, 171–184 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Collins, J. et al. Fibrinogen-binding and platelet-aggregation actions of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein. Mol. Microbiol. 85, 862–877 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kankainen, M. et al. Comparative genomic evaluation of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl Acad. Sci. USA 106, 17193–17198 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rampersaud, R. et al. Inerolysin, a cholesterol-dependent cytolysin produced by Lactobacillus iners. J. Bacteriol. 193, 1034–1041 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wuyts, S. et al. Giant-scale phylogenomics of the Lactobacillus casei group highlights taxonomic inconsistencies and divulges novel clade-associated options. mSystems 2, e00061-17 (2017).

    Article 

    Google Scholar
     

  • Weinberg, E. D. The Lactobacillus anomaly: whole iron abstinence. Perspect. Biol. Med. 40, 578–583 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Hazards, E. Po. B. et al. Replace of the listing of QPS-recommended organic brokers deliberately added to meals or feed as notified to EFSA 7: suitability of taxonomic items notified to EFSA till September 2017. EFSA J. 16, e05131 (2018).


    Google Scholar
     

  • Cannon, J. P., Lee, T. A., Bolanos, J. T. & Danziger, L. H. Pathogenic relevance of Lactobacillus: a retrospective assessment of over 200 instances. Eur. J. Clin. Microbiol. Infect. Dis. 24, 31–40 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Richardson, E. J. et al. Gene alternate drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).

    Article 

    Google Scholar
     

  • Gordon, R. J. & Lowy, F. D. Pathogenesis of methicillin-resistant Staphylococcus aureus an infection. Clin. Infect. Dis. 46 (Suppl. 5), S350–359 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Otto, M. Staphylococcus aureus toxins. Curr. Opin. Microbiol. 17, 32–37 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Powers, M. E. & Bubeck Wardenburg, J. Igniting the hearth: Staphylococcus aureus virulence elements within the pathogenesis of sepsis. PLoS Pathog. 10, e1003871 (2014).

    Article 

    Google Scholar
     

  • Healy, C. M., Baker, C. J., Palazzi, D. L., Campbell, J. R. & Edwards, M. S. Distinguishing true coagulase-negative Staphylococcus infections from contaminants within the neonatal intensive care unit. J. Perinatol. 33, 52–58 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Michels, R., Final, Okay., Becker, S. L. & Papan, C. Replace on coagulase-negative staphylococci–what the clinician ought to know. Microorganisms 9, 830 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Marchant, E. A., Boyce, G. Okay., Sadarangani, M. & Lavoie, P. M. Neonatal sepsis resulting from coagulase-negative staphylococci. Clin. Dev. Immunol. 2013, 586076 (2013).

    Article 

    Google Scholar
     

  • Zhen, X., Lundborg, C. S., Solar, X., Hu, X. & Dong, H. Financial burden of antibiotic resistance in ESKAPE organisms: a scientific assessment. Antimicrob. Resist. Infect. Management 8, 137 (2019).

    Article 

    Google Scholar
     

  • Kamal, S. M., Simpson, D. J., Wang, Z., Ganzle, M. & Romling, U. Horizontal transmission of stress resistance genes form the ecology of beta- and gamma-proteobacteria. Entrance. Microbiol. 12, 696522 (2021).

    Article 

    Google Scholar
     

  • Kramer, A., Schwebke, I. & Kampf, G. How lengthy do nosocomial pathogens persist on inanimate surfaces? A scientific assessment. BMC Infect. Dis. 6, 130 (2006).

    Article 

    Google Scholar
     

  • Neely, A. N. & Maley, M. P. Survival of enterococci and staphylococci on hospital materials and plastic. J. Clin. Microbiol. 38, 724–726 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Bizzarro, M. J. et al. Neonatal sepsis 2004–2013: the rise and fall of coagulase-negative staphylococci. J. Pediatr. 166, 1193–1199 (2015).

    Article 

    Google Scholar
     

  • Dong, Y., Speer, C. P. & Glaser, Okay. Past sepsis: Staphylococcus epidermidis is an underestimated however vital contributor to neonatal morbidity. Virulence 9, 621–633 (2018).

    Article 

    Google Scholar
     

  • Glaser, M. A., Hughes, L. M., Jnah, A. & Newberry, D. Neonatal sepsis: a assessment of pathophysiology and present administration methods. Adv. Neonatal Care 21, 49–60 (2021).

    Article 

    Google Scholar
     

  • Nan, C. et al. Maternal group B Streptococcus-related stillbirth: a scientific assessment. BJOG 122, 1437–1445 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Vazquez-Boland, J. A., Krypotou, E. & Scortti, M. Listeria placental an infection. mBio 8, e00949–17 (2017).

    Article 

    Google Scholar
     

  • DiGiulio, D. B. et al. Microbial invasion of the amniotic cavity in preeclampsia as assessed by cultivation and sequence-based strategies. J. Perinat. Med. 38, 503–513 (2010).

    Article 
    CAS 

    Google Scholar
     

  • DiGiulio, D. B. et al. Microbial prevalence, range and abundance in amniotic fluid throughout preterm labor: a molecular and culture-based investigation. PLoS One 3, e3056 (2008). Sequencing examine of amniotic fluid of 166 girls in preterm labour with PCR and tradition that confirmed near-complete constructive correlation of bacterial detection with neonatal morbidity and mortality.

    Article 
    ADS 

    Google Scholar
     

  • DiGiulio, D. B. et al. Prevalence and variety of microbes within the amniotic fluid, the fetal inflammatory response, and being pregnant final result in girls with preterm pre-labor rupture of membranes. Am. J. Reprod. Immunol. 64, 38–57 (2010).


    Google Scholar
     

  • DiGiulio, D. B. et al. Microbial invasion of the amniotic cavity in pregnancies with small-for-gestational-age fetuses. J. Perinat. Med. 38, 495–502 (2010).

    Article 

    Google Scholar
     

  • Enders, G., Daiminger, A., Bader, U., Exler, S. & Enders, M. Intrauterine transmission and medical final result of 248 pregnancies with main cytomegalovirus an infection in relation to gestational age. J. Clin. Virol. 52, 244–246 (2011).

    Article 

    Google Scholar
     

  • Luckey, T. D. Germfree Life and Gnotobiology (Tutorial Press, 1963).

  • Rasmussen, S. A., Jamieson, D. J., Honein, M. A. & Petersen, L. R. Zika virus and beginning defects–reviewing the proof for causality. N. Engl. J. Med. 374, 1981–1987 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Falk, P. G., Hooper, L. V., Midtvedt, T. & Gordon, J. I. Creating and sustaining the gastrointestinal ecosystem: what we all know and must know from gnotobiology. Microbiol. Mol. Biol. Rev. 62, 1157–1170 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Gordon, H. A. & Pesti, L. The gnotobiotic animal as a instrument within the examine of host microbial relationships. Bacteriol. Rev. 35, 390–429 (1971).

    Article 
    CAS 

    Google Scholar
     

  • Hooper, L. V. et al. Molecular evaluation of commensal host-microbial relationships within the gut. Science 291, 881–884 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wostman, B. S. Germfree and Gnotobiotic Animal Fashions. Background and Functions (CRC Press, 1996).

  • Arvidsson, C., Hallen, A. & Backhed, F. Producing and analyzing germ-free mice. Curr. Protoc. Mouse Biol. 2, 307–316 (2012).


    Google Scholar
     

  • Carter, P. B., Norin, E. & Swennes, A. G. Gnotobiotics and the microbiome. In The Laboratory Rat third edn (eds Suckow, M. A. et al.) Ch. 21, 827–848 (2020).

  • Qv, L. et al. Strategies for institution and upkeep of germ-free rat fashions. Entrance. Microbiol. 11, 1148 (2020).

    Article 

    Google Scholar
     

  • Schoeb, T. R. & Eaton, Okay. A. Gnotobiotics (Tutorial Press, 2017).

  • Jervis-Bardy, J. et al. Deriving correct microbiota profiles from human samples with low bacterial content material by post-sequencing processing of Illumina MiSeq knowledge. Microbiome 3, 19 (2015).

    Article 

    Google Scholar
     

  • Saffarian, A. et al. Crypt- and mucosa-associated core microbiotas in people and their alteration in colon most cancers sufferers. mBio 10, e01315-19 (2019).

    Article 

    Google Scholar
     

  • Jorissen, J. et al. Case–management microbiome examine of power otitis media with effusion in youngsters factors at Streptococcus salivarius as a pathobiont-inhibiting species. mSystems 6, e00056-21 (2021).

    Article 

    Google Scholar
     

  • Salzberg, S. Does the placenta have a bacterial microbiome? Forbes (1 June 2020); https://www.forbes.com/websites/stevensalzberg/2020/06/01/does-the-placenta-have-a-bacterial-microbiome/?sh=7ae092ea250b.

  • Jost, T., Lacroix, C., Braegger, C. & Chassard, C. Evaluation of bacterial range in breast milk utilizing culture-dependent and culture-independent approaches. Br. J. Nutr. 110, 1253–1262 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Treven, P. et al. Analysis of human milk microbiota by 16S rRNA gene next-generation sequencing (NGS) and cultivation/MALDI-TOF mass spectrometry identification. Entrance. Microbiol. 10, 2612 (2019).

    Article 

    Google Scholar
     

  • Bihl, S. et al. When to suspect contamination relatively than colonization—classes from a putative fetal sheep microbiome. Intestine Microbes 14, 2005751 (2022).

    Article 

    Google Scholar
     

  • Kennedy, Okay. M. et al. Over-celling fetal microbial publicity. Cell 184, 5839–5841 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Eisenhofer, R. et al. Contamination in low microbial biomass microbiome research: points and suggestions. Tendencies Microbiol. 27, 105–117 (2019).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular