Sunday, February 5, 2023
HomeNatureLarge spin polarization and a pair of antiparallel spins in a chiral...

Large spin polarization and a pair of antiparallel spins in a chiral superconductor


  • Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S.-H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).

    Article 

    Google Scholar
     

  • Evans, F. et al. Principle of chirality induced spin selectivity: progress and challenges. Adv. Mater. 2022, 2106629 (2022).


    Google Scholar
     

  • Kumar, A. et al. Chirality-induced spin polarization locations symmetry constraints on biomolecular interactions. Proc. Natl Acad. Sci. USA 114, 2474–2478 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Banerjee-Ghosh, Ok. et al. Separation of enantiomers by their enantiospecific interplay with achiral magnetic substrates. Science 360, 1331 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Edelstein, V. M. Spin polarization of conduction electrons induced by electrical present in two-dimensional uneven electron methods. Stable State Commun. 73, 233–235 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Fiebig, M. Revival of the magnetoelectric impact. J. Phys. D 38, R123 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Levitov, L. S., Nazarov, Y. V. & Eliashberg, G. M. Magnetostatics of superconductors with out an inversion heart. JETP Lett. 41, 445–447 (1985).

    ADS 

    Google Scholar
     

  • Edelstein, V. M. Magnetoelectric impact in polar superconductors. Phys. Rev. Lett. 75, 2004 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • He, W.-Y. & Legislation, Ok. T. Magnetoelectric results in gyrotropic superconductors. Phys. Rev. Res. 2, 012073(R) (2020).

    Article 

    Google Scholar
     

  • Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and purposes. Rev. Mod. Phys. 76, 323410 (2004).

    Article 

    Google Scholar
     

  • Diao, Z. et al. Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random-access reminiscence. J. Phys. Condens. Matter 19, 165209 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Kawahara, T., Ito, Ok., Takemura, R. & Ohno, H. Spin-transfer torque RAM know-how: evaluate and prospect. Microelectron Reliab. 52, 613–327 (2012).

    Article 

    Google Scholar
     

  • Uchida, Ok. & Iguchi, R. Spintronic thermal administration. J. Phys. Soc. Japan 90, 122001 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Shiomi, Y. et al. Spin pumping from nuclear spin waves. Nat. Phys. 15, 22–26 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mewes, C. Ok. A. Spin currents go nuclear. Nat. Phys. 15, 8–9 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shiomi, Y. et al. Spin-electricity conversion induced by spin injection into topological insulators. Phys. Rev. Lett. 113, 196601 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nan, T. et al. Controlling spin present polarization by non-collinear antiferromagnetism. Nat. Commun. 11, 4671 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Statement of the antiferromagnetic spin Corridor impact. Nat. Mater. 20, 800–804 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mtangi, W. et al. Management of electrons’ spin eliminates hydrogen peroxide formation throughout water splitting. J. Am. Chem. Soc. 139, 2794–2798 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Alpern, H. et al. Magnetic-related states and order parameter induced in a traditional superconductor by nonmagnetic chiral molecules. Nano Lett. 19, 5167–5175 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Alpern, H. et al. Unconventional Meissner screening induced by chiral molecules in a traditional superconductor. Phys. Rev. Mater. 5, 114801 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Urayama, H. et al. A brand new ambient-pressure natural superconductor based mostly on BEDT-TTF with Tc larger than 10 Ok (Tc=10.4 Ok). Chem. Lett. 17, 55–58 (1988).

    Article 

    Google Scholar
     

  • Kanoda, Ok. Current progress in NMR research on natural conductors. Hyperfine Work together. 104, 235–249 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McKenzie, R. H. Similarities between natural and cuprate superconductors. Science 278, 820–821 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kagawa, F., Itou, T., Miyagawa, Ok. & Kanoda, Ok. Transport criticality of the first-order Mott transition within the quasi-two-dimensional natural conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Phys. Rev. B 69, 064511 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Ito, H., Ishiguro, T., Kubota, M. & Saito, G. Metallic-nonmetal transition and superconductivity localization within the two-dimensional conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl. J. Phys. Soc. Japan 65, 2987–2993 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Powell, B. J. & McKenzie, R. H. Half-filled layered natural superconductors and the resonating-valence-bond idea of the Hubbard-Heisenberg mannequin. Phys. Rev. Lett. 94, 047004 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fujio, S. et al. Enantiomorph identification and stacking faults in κ-(BEDT-TTF)2Cu(NCS)2 by convergent-beam electron diffraction. J. Appl. Crystallogr. 42, 433–441 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Arakawa, T. et al. Sub-Poissonian shot noise in CoFeB/MgO/CoFeB-based magnetic tunneling junctions. Appl. Phys. Lett. 98, 202103 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Isasa, M., Villamor, E., Hueso, L. E., Gradhand, M. & Casanova, F. Temperature dependence of spin diffusion size and spin Corridor angle in Au and Pt. Phys. Rev. B 91, 024402 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Narushima, T. & Okamoto, H. Round dichroism microscopy free from commingling linear dichroism by way of discretely modulated round polarisation. Sci. Rep. 6, 35731 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kato, Y. Ok., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Statement of the spin Corridor impact in semiconductors. Science 306, 1910–1913 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kawaguchi, G., Bardin, A. A., Suda, M., Uruichi, M. & Yamamoto, H. M. An ambipolar superconducting field-effect transistor working above liquid helium temperature. Adv. Mater. 31, 1805715 (2019).

    Article 

    Google Scholar
     

  • Yamamoto, H. M. Section-transition units based mostly on natural Mott insulators. Bull. Chem. Soc. Jpn. 94, 2505–2539 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Inui, A. et al. Chirality-induced spin-polarised state of chiral crystal CrNb3S6. Phys. Rev. Lett. 124, 166602 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shiota, Ok. et al. Chirality-induced spin polarisation over macroscopic distances in chiral disilicide crystals. Phys. Rev. Lett. 127, 126602 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Commeau, B., Geilhufe, R. M., Fernando, W. & Balatsky, A. V. Structural and digital properties of α-(BEDT-TTF)2I3, β-(BEDT-TTF)2I3, and κ-(BEDT-TTF)2X3 (X=I, F, Br, Cl) natural cost switch salts. Phys. Rev. B 96, 125135 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Mori, T. Digital Properties of Natural Conductors (Springer, 2016).

  • Mori, H. et al. Higher crucial discipline and significant present density of natural superconductor, κ-(BEDT-TTF)2Cu(NCS)2. Synth. Met. 42, 2159–2162 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Maekawa, S., Valenzuela, S. O., Saitoh, E. & Kimura, T. (eds.) Spin Present (Oxford Univ. Press, 2015).

  • Soulen, R. J. Jr et al. Measuring the spin polarisation of a steel with superconducting level contact. Science 282, 85 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ziese, M. & Thornton, M. J. Spin Electronics (Springer, 2001).

  • Music, P. et al. Coexistence of enormous standard and planar spin Corridor impact with lengthy spin diffusion size in a low-symmetry semimetal at room temperature. Nat. Mater. 19, 292–298 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leurs, B. W. A., Nazario, Z., Santiago, D. I. & Zaanen, J. Non-Abelian hydrodynamics and the movement of spin in spin-orbit coupled substances. Ann. Phys. 323, 907–945 (2008).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular