Thursday, February 2, 2023
HomeNatureIn-plane charged area partitions with memristive behaviour in a ferroelectric movie

In-plane charged area partitions with memristive behaviour in a ferroelectric movie


  • Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Area wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martin, L. W. & Rappe, A. M. Skinny-film ferroelectric supplies and their functions. Nat. Rev. Mater. 2, 1–14 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, P., Schoenherr, P. & Seidel, J. Useful ferroic area partitions for nanoelectronics. Supplies 12, 2927 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Scott, J. F. Functions of recent ferroelectrics. Science 315, 954–959 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meier, D. & Selbach, S. M. Ferroelectric area partitions for nanotechnology. Nat. Rev. Mater. 7, 157–173 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Seidel, J. et al. Conduction at area partitions in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meier, D. et al. Anisotropic conductance at improper ferroelectric area partitions. Nat. Mater. 11, 284–288 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sluka, T., Tagantsev, A. Ok., Bednyakov, P. & Setter, N. Free-electron gasoline at charged area partitions in insulating BaTiO3. Nat. Commun. 4, 1808 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Crassous, A., Sluka, T., Tagantsev, A. Ok. & Setter, N. Polarization cost as a reconfigurable quasi-dopant in ferroelectric skinny movies. Nat. Nanotechnol. 10, 614–618 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mundy, J. A. et al. Useful digital inversion layers at ferroelectric area partitions. Nat. Mater. 16, 622–627 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rojac, T. et al. Area-wall conduction in ferroelectric BiFeO3 managed by accumulation of charged defects. Nat. Mater. 16, 322–327 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Geng, Y. et al. Direct visualization of magnetoelectric domains. Nat. Mater. 13, 163–167 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic units. Nat. Nanotechnol. 5, 143–147 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tsymbal, E. Y. & Kohlstedt, H. Tunneling throughout a ferroelectric. Science 313, 181–183 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Sanchez-Santolino, G. et al. Resonant electron tunnelling assisted by charged area partitions in multiferroic tunnel junctions. Nat. Nanotechnol. 12, 655–662 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, M., Tao, L. L. & Tsymbal, E. Y. Area-wall tunneling electroresistance ffect. Phys. Rev. Lett. 123, 266602 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McGilly, L. J., Yudin, P., Feigl, L., Tagantsev, A. Ok. & Setter, N. Controlling area wall movement in ferroelectric skinny movies. Nat. Nanotechnol. 10, 145–150 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gao, P. et al. Direct observations of retention failure in ferroelectric recollections. Adv. Mater. 24, 1106–1110 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, J. et al. Non permanent formation of extremely conducting area partitions for non-destructive read-out of ferroelectric domain-wall resistance switching recollections. Nat. Mater. 17, 49–56 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Direct commentary of room-temperature out-of-plane ferroelectricity and tunneling electroresistance on the two-dimensional restrict. Nat. Commun. 9, 3319 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, H. et al. Direct commentary of a two-dimensional gap gasoline at oxide interfaces. Nat. Mater. 17, 231–236 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Music, Ok. et al. Direct imaging of the electron liquid at oxide interfaces. Nat. Nanotechnol. 13, 198–203 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, S. et al. In the direction of quantitative mapping of the cost distribution alongside a nanowire by in-line electron holography. Ultramicroscopy 194, 126–132 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chua, L. If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29, 104001 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ouaja Rziga, F., Mbarek, Ok., Ghedira, S. & Besbes, Ok. The essential I–V traits of memristor mannequin: simulation and evaluation. Appl. Phys. A 123, 288 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive units for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lian, X. et al. Traits and transport mechanisms of triple switching regimes of TaOx memristor. Appl. Phys. Lett. 110, 173504 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shin, Y. H., Grinberg, I., Chen, I. W. & Rappe, A. M. Nucleation and development mechanism of ferroelectric domain-wall movement. Nature 449, 881–884 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nelson, C. T. et al. Area dynamics throughout ferroelectric switching. Science 334, 968–971 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, S., Grinberg, I. & Rappe, A. M. Intrinsic ferroelectric switching from first ideas. Nature 534, 360–363 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Rodriguez, B. J. et al. Unraveling deterministic mesoscopic polarization switching mechanisms: spatially resolved research of a tilt grain boundary in bismuth ferrite. Adv. Funct. Mater. 19, 2053–2063 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kalinin, S. V. & Spaldin, N. A. Useful ion defects in transition steel oxides. Science 341, 858–859 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, D. J. et al. Ferroelectric tunnel memristor. Nano Lett. 12, 5697–5702 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hernandez-Martin, D. et al. Managed signal reversal of electroresistance in oxide tunnel junctions by electrochemical-ferroelectric coupling. Phys. Rev. Lett. 125, 266802 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nukala, P. et al. Reversible oxygen migration and section transitions in hafnia-based ferroelectric units. Science 372, 630–635 (2021).

  • Yun, Y. et al. Intrinsic ferroelectricity in Y-doped HfO2 movies. Nat. Mater. 21, 903–909 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. A number of-ellipse becoming technique to exactly measure the positions of atomic columns in a transmission electron microscope picture. Micron 113, 99–104 (2018).

    Article 
    CAS 

    Google Scholar
     

  • PE, B. Projector augmented-wave technique. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, T.-J. et al. Digital construction and chemistry of iron-based steel oxide nanostructured supplies: a NEXAFS investigation of BiFeO3, Bi2Fe4O9, α-Fe2O3, γ-Fe2O3, and Fe/Fe3O4. J. Phys. Chem. C 112, 10359–10369 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Lazic, I., Bosch, E. G. T. & Lazar, S. Section distinction STEM for skinny samples: built-in differential section distinction. Ultramicroscopy 160, 265–280 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Aschauer, U., Pfenninger, R., Selbach, S. M., Grande, T. & Spaldin, N. A. Pressure-controlled oxygen emptiness formation and ordering in CaMnO3. Phys. Rev. B 88, 054111 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gong, J. J. et al. Interactions of charged area partitions and oxygen vacancies in BaTiO3: a first-principles examine. Mater. At present Phys. 6, 9–21 (2018).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular