Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Area wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).
Martin, L. W. & Rappe, A. M. Skinny-film ferroelectric supplies and their functions. Nat. Rev. Mater. 2, 1–14 (2016).
Sharma, P., Schoenherr, P. & Seidel, J. Useful ferroic area partitions for nanoelectronics. Supplies 12, 2927 (2019).
Scott, J. F. Functions of recent ferroelectrics. Science 315, 954–959 (2007).
Meier, D. & Selbach, S. M. Ferroelectric area partitions for nanotechnology. Nat. Rev. Mater. 7, 157–173 (2021).
Seidel, J. et al. Conduction at area partitions in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).
Meier, D. et al. Anisotropic conductance at improper ferroelectric area partitions. Nat. Mater. 11, 284–288 (2012).
Sluka, T., Tagantsev, A. Ok., Bednyakov, P. & Setter, N. Free-electron gasoline at charged area partitions in insulating BaTiO3. Nat. Commun. 4, 1808 (2013).
Crassous, A., Sluka, T., Tagantsev, A. Ok. & Setter, N. Polarization cost as a reconfigurable quasi-dopant in ferroelectric skinny movies. Nat. Nanotechnol. 10, 614–618 (2015).
Mundy, J. A. et al. Useful digital inversion layers at ferroelectric area partitions. Nat. Mater. 16, 622–627 (2017).
Rojac, T. et al. Area-wall conduction in ferroelectric BiFeO3 managed by accumulation of charged defects. Nat. Mater. 16, 322–327 (2017).
Geng, Y. et al. Direct visualization of magnetoelectric domains. Nat. Mater. 13, 163–167 (2014).
Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic units. Nat. Nanotechnol. 5, 143–147 (2010).
Tsymbal, E. Y. & Kohlstedt, H. Tunneling throughout a ferroelectric. Science 313, 181–183 (2006).
Sanchez-Santolino, G. et al. Resonant electron tunnelling assisted by charged area partitions in multiferroic tunnel junctions. Nat. Nanotechnol. 12, 655–662 (2017).
Li, M., Tao, L. L. & Tsymbal, E. Y. Area-wall tunneling electroresistance ffect. Phys. Rev. Lett. 123, 266602 (2019).
McGilly, L. J., Yudin, P., Feigl, L., Tagantsev, A. Ok. & Setter, N. Controlling area wall movement in ferroelectric skinny movies. Nat. Nanotechnol. 10, 145–150 (2015).
Gao, P. et al. Direct observations of retention failure in ferroelectric recollections. Adv. Mater. 24, 1106–1110 (2012).
Jiang, J. et al. Non permanent formation of extremely conducting area partitions for non-destructive read-out of ferroelectric domain-wall resistance switching recollections. Nat. Mater. 17, 49–56 (2017).
Wang, H. et al. Direct commentary of room-temperature out-of-plane ferroelectricity and tunneling electroresistance on the two-dimensional restrict. Nat. Commun. 9, 3319 (2018).
Lee, H. et al. Direct commentary of a two-dimensional gap gasoline at oxide interfaces. Nat. Mater. 17, 231–236 (2018).
Music, Ok. et al. Direct imaging of the electron liquid at oxide interfaces. Nat. Nanotechnol. 13, 198–203 (2018).
Liu, S. et al. In the direction of quantitative mapping of the cost distribution alongside a nanowire by in-line electron holography. Ultramicroscopy 194, 126–132 (2018).
Chua, L. If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29, 104001 (2014).
Ouaja Rziga, F., Mbarek, Ok., Ghedira, S. & Besbes, Ok. The essential I–V traits of memristor mannequin: simulation and evaluation. Appl. Phys. A 123, 288 (2017).
Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive units for computing. Nat. Nanotechnol. 8, 13–24 (2013).
Lian, X. et al. Traits and transport mechanisms of triple switching regimes of TaOx memristor. Appl. Phys. Lett. 110, 173504 (2017).
Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).
Shin, Y. H., Grinberg, I., Chen, I. W. & Rappe, A. M. Nucleation and development mechanism of ferroelectric domain-wall movement. Nature 449, 881–884 (2007).
Nelson, C. T. et al. Area dynamics throughout ferroelectric switching. Science 334, 968–971 (2011).
Liu, S., Grinberg, I. & Rappe, A. M. Intrinsic ferroelectric switching from first ideas. Nature 534, 360–363 (2016).
Rodriguez, B. J. et al. Unraveling deterministic mesoscopic polarization switching mechanisms: spatially resolved research of a tilt grain boundary in bismuth ferrite. Adv. Funct. Mater. 19, 2053–2063 (2009).
Kalinin, S. V. & Spaldin, N. A. Useful ion defects in transition steel oxides. Science 341, 858–859 (2013).
Kim, D. J. et al. Ferroelectric tunnel memristor. Nano Lett. 12, 5697–5702 (2012).
Hernandez-Martin, D. et al. Managed signal reversal of electroresistance in oxide tunnel junctions by electrochemical-ferroelectric coupling. Phys. Rev. Lett. 125, 266802 (2020).
Nukala, P. et al. Reversible oxygen migration and section transitions in hafnia-based ferroelectric units. Science 372, 630–635 (2021).
Yun, Y. et al. Intrinsic ferroelectricity in Y-doped HfO2 movies. Nat. Mater. 21, 903–909 (2022).
Zhang, Q. et al. A number of-ellipse becoming technique to exactly measure the positions of atomic columns in a transmission electron microscope picture. Micron 113, 99–104 (2018).
PE, B. Projector augmented-wave technique. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Park, T.-J. et al. Digital construction and chemistry of iron-based steel oxide nanostructured supplies: a NEXAFS investigation of BiFeO3, Bi2Fe4O9, α-Fe2O3, γ-Fe2O3, and Fe/Fe3O4. J. Phys. Chem. C 112, 10359–10369 (2008).
Lazic, I., Bosch, E. G. T. & Lazar, S. Section distinction STEM for skinny samples: built-in differential section distinction. Ultramicroscopy 160, 265–280 (2016).
Aschauer, U., Pfenninger, R., Selbach, S. M., Grande, T. & Spaldin, N. A. Pressure-controlled oxygen emptiness formation and ordering in CaMnO3. Phys. Rev. B 88, 054111 (2013).
Gong, J. J. et al. Interactions of charged area partitions and oxygen vacancies in BaTiO3: a first-principles examine. Mater. At present Phys. 6, 9–21 (2018).