Sunday, February 5, 2023
HomeNatureGetting ready random states and benchmarking with many-body quantum chaos

Getting ready random states and benchmarking with many-body quantum chaos


  • Brandão, F. G. S. L., Chemissany, W., Hunter-Jones, N., Kueng, R. & Preskill, J. Fashions of quantum complexity development. PRX Quantum 2, 30316 (2021).

    Article 

    Google Scholar
     

  • Hayden, P. & Preskill, J. Black holes as mirrors: quantum data in random subsystems. J. Excessive. Vitality Phys. 2007, 120 (2007).

    Article 

    Google Scholar
     

  • Neill, C. et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360, 195–199 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D. & Gambetta, J. M. Validating quantum computer systems utilizing randomized mannequin circuits. Phys. Rev. A 100, 32328 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy utilizing a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Sturdy quantum computational benefit utilizing a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Emerson, J., Weinstein, Y. S., Saraceno, M., Lloyd, S. & Cory, D. G. Pseudo-random unitary operators for quantum data processing. Science 302, 2098–2100 (2003).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Harrow, A. W. & Low, R. A. Random quantum circuits are approximate 2-designs. Commun. Math. Phys. 291, 257–302 (2009).

    Article 
    MATH 

    Google Scholar
     

  • Dankert, C., Cleve, R., Emerson, J. & Livine, E. Actual and approximate unitary 2-designs and their software to constancy estimation. Phys. Rev. A 80, 12304 (2009).

    Article 

    Google Scholar
     

  • Brandão, F. G. S. L., Harrow, A. W. & Horodecki, M. Native random quantum circuits are approximate polynomial-designs. Commun. Math. Phys. 346, 397–434 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Ohliger, M., Nesme, V. & Eisert, J. Environment friendly and possible state tomography of quantum many-body programs. New. J. Phys. 15, 15024 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Nakata, Y., Hirche, C., Koashi, M. & Winter, A. Environment friendly quantum pseudorandomness with practically time-independent Hamiltonian dynamics. Phys. Rev. X 7, 21006 (2017).


    Google Scholar
     

  • Kaufman, A. M. et al. Quantum thermalization by way of entanglement in an remoted many-body system. Science 353, 794–800 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cotler, J. et al. Emergent quantum state designs from particular person many-body wavefunctions. Preprint at https://arxiv.org/abs/2103.03536 (2021).

  • Boixo, S. et al. Characterizing quantum supremacy in near-term units. Nat. Phys. 14, 595–600 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bouland, A., Fefferman, B., Nirkhe, C. & Vazirani, U. On the complexity and verification of quantum random circuit sampling. Nat. Phys. 15, 159–163 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Haferkamp, J. et al. Closing gaps of a quantum benefit with short-time Hamiltonian dynamics. Phys. Rev. Lett. 125, 250501 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Brydges, T. et al. Probing Rényi entanglement entropy through randomized measurements. Science 364, 260–263 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Elben, A. et al. Cross-platform verification of intermediate scale quantum units. Phys. Rev. Lett. 124, 10504 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huang, H. Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from only a few measurements. Nat. Phys. 16, 1050–1057 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Harrow, A. W. The church of the symmetric subspace. Preprint at;https://arxiv.org/abs/1308.6595 (2013).

  • Jurcevic, P. et al. Demonstration of quantum quantity 64 on a superconducting quantum computing system. Quantum Sci. Technol. 6, 025020 (2021).

    Article 

    Google Scholar
     

  • Piroli, L., Sünderhauf, C. & Qi, X. L. A random unitary circuit mannequin for black gap evaporation. J. Excessive. Vitality Phys. 2020, 63 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Browaeys, A. & Lahaye, T. Many-body physics with individually managed Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Madjarov, I. S. et al. Excessive-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857–861 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Popp, M., Verstraete, F., Martín-Delgado, M. A. & Cirac, J. I. Localizable entanglement. Phys. Rev. A 71, 42306 (2005).

    Article 
    MATH 

    Google Scholar
     

  • Goldstein, S., Lebowitz, J. L., Mastrodonato, C., Tumulka, R. & Zanghì, N. Common chance distribution for the wave operate of a quantum system entangled with its surroundings. Commun. Math. Phys. 342, 965–988 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Norcia, M. A., Younger, A. W. & Kaufman, A. M. Microscopic management and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 41054 (2018).


    Google Scholar
     

  • Cooper, A. et al. Alkaline-Earth atoms in optical tweezers. Phys. Rev. X 8, 41055 (2018).

    CAS 

    Google Scholar
     

  • Saskin, S., Wilson, J. T., Grinkemeyer, B. & Thompson, J. D. Slender-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett. 122, 143002 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Covey, J. P., Madjarov, I. S., Cooper, A. & Endres, M. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays. Phys. Rev. Lett. 122, 173201 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic remoted quantum programs. Nature 452, 854–858 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, thermalization,and entanglement. Rev. Mod. Phys. 91, 21001 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ueda, M. Quantum equilibration, thermalization and prethermalization in ultracold atoms. Nat. Rev. Phys. 2, 669–681 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Popescu, S., Quick, A. J. & Winter, A. Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754–758 (2006).

    Article 
    CAS 

    Google Scholar
     

  • del Rio, L., Hutter, A., Renner, R. & Wehner, S. Relative thermalization. Phys. Rev. E 94, 22104 (2016).

    Article 

    Google Scholar
     

  • Porter, C. E. & Thomas, R. G. Fluctuations of nuclear response widths. Phys. Rev. 104, 483–491 (1956).

    Article 
    CAS 

    Google Scholar
     

  • Ambainis, A. and Emerson, J. Quantum t-designs: t-wise independence within the quantum world. In Proceedings Twenty-Second Annual IEEE Convention on Computational Complexity 129–140 (IEEE, 2007).

  • Khemani, V., Vishwanath, A. & Huse, D. A. Operator spreading and the emergence of dissipative hydrodynamics beneath unitary evolution with conservation legal guidelines. Phys. Rev. X 8, 31057 (2018).

    CAS 

    Google Scholar
     

  • Flammia, S. T. & Liu, Y. Okay. Direct constancy estimation from few Pauli measurements. Phys. Rev. Lett. 106, 230501 (2011).

    Article 

    Google Scholar
     

  • Slagle, Okay. et al. Microscopic characterization of Ising conformal discipline principle in Rydberg chains. Phys. Rev. B 104, 235109 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cotler, J., Hunter-Jones, N. & Ranard, D. Fluctuations of subsystem entropies at late occasions. Phys. Rev. A 105, 022416 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    Article 

    Google Scholar
     

  • Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Monroe, C. et al. Programmable quantum simulations of spin programs with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, H. S. et al. Quantum computational benefit utilizing photons. Science 370, 1460–1463 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Giovannetti, V. Quantum-enhanced measurements: beating the usual quantum restrict. Science 306, 1330–1336 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Mark, D. Okay., Choi, J., Shaw, A. L., Endres, M. and Choi, S. Benchmarking quantum simulators utilizing quantum chaos. Preprint at https://arxiv.org/abs/2205.12211 (2022).

  • Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 41052 (2019).

    CAS 

    Google Scholar
     

  • Barredo, D., de Leseleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Endres, M. et al. Atom-by-atom meeting of defect-free one-dimensional chilly atom arrays. Science 354, 1024–1027 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Web page, D. N. Common entropy of a subsystem. Phys. Rev. Lett. 71, 1291–1294 (1993).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • de Léséleuc, S. et al. Remark of a symmetry-protected topological section of interacting bosons with Rydberg atoms. Science 365, 775–780 (2019).

    Article 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular