Brandão, F. G. S. L., Chemissany, W., Hunter-Jones, N., Kueng, R. & Preskill, J. Fashions of quantum complexity development. PRX Quantum 2, 30316 (2021).
Hayden, P. & Preskill, J. Black holes as mirrors: quantum data in random subsystems. J. Excessive. Vitality Phys. 2007, 120 (2007).
Neill, C. et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360, 195–199 (2018).
Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D. & Gambetta, J. M. Validating quantum computer systems utilizing randomized mannequin circuits. Phys. Rev. A 100, 32328 (2019).
Arute, F. et al. Quantum supremacy utilizing a programmable superconducting processor. Nature 574, 505–510 (2019).
Wu, Y. et al. Sturdy quantum computational benefit utilizing a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).
Emerson, J., Weinstein, Y. S., Saraceno, M., Lloyd, S. & Cory, D. G. Pseudo-random unitary operators for quantum data processing. Science 302, 2098–2100 (2003).
Harrow, A. W. & Low, R. A. Random quantum circuits are approximate 2-designs. Commun. Math. Phys. 291, 257–302 (2009).
Dankert, C., Cleve, R., Emerson, J. & Livine, E. Actual and approximate unitary 2-designs and their software to constancy estimation. Phys. Rev. A 80, 12304 (2009).
Brandão, F. G. S. L., Harrow, A. W. & Horodecki, M. Native random quantum circuits are approximate polynomial-designs. Commun. Math. Phys. 346, 397–434 (2016).
Ohliger, M., Nesme, V. & Eisert, J. Environment friendly and possible state tomography of quantum many-body programs. New. J. Phys. 15, 15024 (2013).
Nakata, Y., Hirche, C., Koashi, M. & Winter, A. Environment friendly quantum pseudorandomness with practically time-independent Hamiltonian dynamics. Phys. Rev. X 7, 21006 (2017).
Kaufman, A. M. et al. Quantum thermalization by way of entanglement in an remoted many-body system. Science 353, 794–800 (2016).
Cotler, J. et al. Emergent quantum state designs from particular person many-body wavefunctions. Preprint at https://arxiv.org/abs/2103.03536 (2021).
Boixo, S. et al. Characterizing quantum supremacy in near-term units. Nat. Phys. 14, 595–600 (2018).
Bouland, A., Fefferman, B., Nirkhe, C. & Vazirani, U. On the complexity and verification of quantum random circuit sampling. Nat. Phys. 15, 159–163 (2019).
Haferkamp, J. et al. Closing gaps of a quantum benefit with short-time Hamiltonian dynamics. Phys. Rev. Lett. 125, 250501 (2020).
Brydges, T. et al. Probing Rényi entanglement entropy through randomized measurements. Science 364, 260–263 (2019).
Elben, A. et al. Cross-platform verification of intermediate scale quantum units. Phys. Rev. Lett. 124, 10504 (2020).
Huang, H. Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from only a few measurements. Nat. Phys. 16, 1050–1057 (2020).
Harrow, A. W. The church of the symmetric subspace. Preprint at;https://arxiv.org/abs/1308.6595 (2013).
Jurcevic, P. et al. Demonstration of quantum quantity 64 on a superconducting quantum computing system. Quantum Sci. Technol. 6, 025020 (2021).
Piroli, L., Sünderhauf, C. & Qi, X. L. A random unitary circuit mannequin for black gap evaporation. J. Excessive. Vitality Phys. 2020, 63 (2020).
Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).
Browaeys, A. & Lahaye, T. Many-body physics with individually managed Rydberg atoms. Nat. Phys. 16, 132–142 (2020).
Madjarov, I. S. et al. Excessive-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857–861 (2020).
Popp, M., Verstraete, F., Martín-Delgado, M. A. & Cirac, J. I. Localizable entanglement. Phys. Rev. A 71, 42306 (2005).
Goldstein, S., Lebowitz, J. L., Mastrodonato, C., Tumulka, R. & Zanghì, N. Common chance distribution for the wave operate of a quantum system entangled with its surroundings. Commun. Math. Phys. 342, 965–988 (2016).
Norcia, M. A., Younger, A. W. & Kaufman, A. M. Microscopic management and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 41054 (2018).
Cooper, A. et al. Alkaline-Earth atoms in optical tweezers. Phys. Rev. X 8, 41055 (2018).
Saskin, S., Wilson, J. T., Grinkemeyer, B. & Thompson, J. D. Slender-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett. 122, 143002 (2019).
Covey, J. P., Madjarov, I. S., Cooper, A. & Endres, M. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays. Phys. Rev. Lett. 122, 173201 (2019).
Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic remoted quantum programs. Nature 452, 854–858 (2008).
Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, thermalization,and entanglement. Rev. Mod. Phys. 91, 21001 (2019).
Ueda, M. Quantum equilibration, thermalization and prethermalization in ultracold atoms. Nat. Rev. Phys. 2, 669–681 (2020).
Popescu, S., Quick, A. J. & Winter, A. Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754–758 (2006).
del Rio, L., Hutter, A., Renner, R. & Wehner, S. Relative thermalization. Phys. Rev. E 94, 22104 (2016).
Porter, C. E. & Thomas, R. G. Fluctuations of nuclear response widths. Phys. Rev. 104, 483–491 (1956).
Ambainis, A. and Emerson, J. Quantum t-designs: t-wise independence within the quantum world. In Proceedings Twenty-Second Annual IEEE Convention on Computational Complexity 129–140 (IEEE, 2007).
Khemani, V., Vishwanath, A. & Huse, D. A. Operator spreading and the emergence of dissipative hydrodynamics beneath unitary evolution with conservation legal guidelines. Phys. Rev. X 8, 31057 (2018).
Flammia, S. T. & Liu, Y. Okay. Direct constancy estimation from few Pauli measurements. Phys. Rev. Lett. 106, 230501 (2011).
Slagle, Okay. et al. Microscopic characterization of Ising conformal discipline principle in Rydberg chains. Phys. Rev. B 104, 235109 (2021).
Cotler, J., Hunter-Jones, N. & Ranard, D. Fluctuations of subsystem entropies at late occasions. Phys. Rev. A 105, 022416 (2022).
Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).
Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).
Monroe, C. et al. Programmable quantum simulations of spin programs with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).
Zhong, H. S. et al. Quantum computational benefit utilizing photons. Science 370, 1460–1463 (2020).
Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).
Giovannetti, V. Quantum-enhanced measurements: beating the usual quantum restrict. Science 306, 1330–1336 (2004).
Mark, D. Okay., Choi, J., Shaw, A. L., Endres, M. and Choi, S. Benchmarking quantum simulators utilizing quantum chaos. Preprint at https://arxiv.org/abs/2205.12211 (2022).
Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 41052 (2019).
Barredo, D., de Leseleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).
Endres, M. et al. Atom-by-atom meeting of defect-free one-dimensional chilly atom arrays. Science 354, 1024–1027 (2016).
Web page, D. N. Common entropy of a subsystem. Phys. Rev. Lett. 71, 1291–1294 (1993).
de Léséleuc, S. et al. Remark of a symmetry-protected topological section of interacting bosons with Rydberg atoms. Science 365, 775–780 (2019).