Fischer, E. M. & Knutti, R. Anthropogenic contribution to international prevalence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).
Meehl, G. A. & Tebaldi, C. Extra intense, extra frequent, and longer lasting warmth waves within the twenty first century. Science 305, 994–997 (2004).
Harris, R. M. et al. Organic responses to the press and pulse of local weather tendencies and excessive occasions. Nat. Clim. Change 8, 579–587 (2018).
Until, A., Rypel, A. L., Bray, A. & Fey, S. B. Fish die-offs are concurrent with thermal extremes in north temperate lakes. Nat. Clim. Change 9, 637–641 (2019).
Smale, D. A. et al. Marine heatwaves threaten international biodiversity and the availability of ecosystem companies. Nat. Clim. Change 9, 306–312 (2019).
Vasseur, D. A. et al. Elevated temperature variation poses a larger danger to species than local weather warming. Proc. R. Soc. B 281, 20132612 (2014).
Ma, G., Rudolf, V. H. & Ma, C. Excessive temperature occasions alter demographic charges, relative health, and group construction. Glob. Change Biol. 21, 1794–1808 (2015).
Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of fixing climatic variability. Biol. Rev. 92, 22–42 (2017).
Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Placing the warmth on tropical animals. Science 320, 1296–1297 (2008).
Dillon, M. E., Wang, G. & Huey, R. B. International metabolic impacts of latest local weather warming. Nature 467, 704–706 (2010).
Energy, S. B. & Delage, F. P. Setting and smashing excessive temperature information over the approaching century. Nat. Clim. Change 9, 529–534 (2019).
Fischer, E. M., Sippel, S. & Knutti, R. Rising likelihood of record-shattering local weather extremes. Nat. Clim. Change 11, 689–695 (2021).
Román-Palacios, C. & Wiens, J. J. Current responses to local weather change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).
Soroye, P., Newbold, T. & Kerr, J. Local weather change contributes to widespread declines amongst bumble bees throughout continents. Science 367, 685–688 (2020).
McKechnie, A. E. & Wolf, B. O. Local weather change will increase the chance of catastrophic avian mortality occasions throughout excessive warmth waves. Biol. Lett. 6, 253–256 (2010).
Maxwell, S. L. et al. Conservation implications of ecological responses to excessive climate and local weather occasions. Divers. Distrib. 25, 613–625 (2019).
Seneviratne, S. I. et al. in Local weather Change 2021: The Bodily Science Foundation. Contribution of Working Group I to the Sixth Evaluation Report of the Intergovernmental Panel on Local weather Change (eds Masson-Delmotte, V. et al.) Ch. 11, 1571–1759 (Cambridge Univ. Press, 2021).
Mora, C. et al. International danger of lethal warmth. Nat. Clim. Change 7, 501–506 (2017).
Battisti, D. S. & Naylor, R. L. Historic warnings of future meals insecurity with unprecedented seasonal warmth. Science 323, 240–244 (2009).
Warren, R., Value, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected impact on bugs, vertebrates, and vegetation of limiting international warming to 1.5°C slightly than 2°C. Science 360, 791–795 (2018).
Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from local weather change. Nature 580, 496–501 (2020).
Deutsch, C. A. et al. Impacts of local weather warming on terrestrial ectotherms throughout latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).
Ma, G., Hoffmann, A. A. & Ma, C.-S. Every day temperature extremes play an necessary position in predicting thermal results. J. Exp. Biol. 218, 2289–2296 (2015).
Paaijmans, Ok. P. et al. Temperature variation makes ectotherms extra delicate to local weather change. Glob. Change Biol. 19, 2373–2380 (2013).
Bütikofer, L. et al. The issue of scale in predicting organic responses to local weather. Glob. Change Biol. 26, 6657–6666 (2020).
Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based mostly on regional and impact-related local weather targets. Nature 529, 477–483 (2016).
Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, latest modifications, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016).
Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. A number of dimensions of local weather change and their implications for biodiversity. Science 344, 1247579 (2014).
Vogel, M. M. et al. Regional amplification of projected modifications in excessive temperatures strongly managed by soil moisture-temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).
Tamarin-Brodsky, T., Hodges, Ok., Hoskins, B. J. & Shepherd, T. G. Adjustments in Northern Hemisphere temperature variability formed by regional warming patterns. Nat. Geosci. 13, 414–421 (2020).
Schär, C. et al. The position of accelerating temperature variability in European summer time heatwaves. Nature 427, 332–336 (2004).
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Better vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
Sinervo, B. et al. Erosion of lizard variety by local weather change and altered thermal niches. Science 328, 894–899 (2010).
Perkins, S. E. & Alexander, L. V. On the measurement of warmth waves. J. Clim. 26, 4500–4517 (2013).
Sunday, J. et al. Thermal tolerance patterns throughout latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).
Hoffmann, A. A. Physiological climatic limits in Drosophila: patterns and implications. J. Exp. Biol. 213, 870–880 (2010).
Buckley, L. B. & Huey, R. B. How excessive temperatures impression organisms and the evolution of their thermal tolerance. Integr. Comp. Biol. 56, 98–109 (2016).
Cohen, J. M., Fink, D. & Zuckerberg, B. Avian responses to excessive climate throughout purposeful traits and temporal scales. Glob. Change Biol. 26, 4240–4250 (2020).
Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).
City, M. C. Accelerating extinction danger from local weather change. Science 348, 571–573 (2015).
Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A brand new era of climate-change experiments: occasions, not tendencies. Entrance. Ecol. Environ. 5, 365–374 (2007).
Riddell, E. A. et al. Publicity to local weather change drives stability or collapse of desert mammal and hen communities. Science 371, 633–636 (2021).
Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. Local weather change and the results of temperature extremes on Australian flying-foxes. Proc. R. Soc. B 275, 419–425 (2008).
McKechnie, A. E., Rushworth, I. A., Myburgh, F. & Cunningham, S. J. Mortality amongst birds and bats throughout an excessive warmth occasion in japanese South Africa. Austral Ecol. 46, 687–691 (2021).
Thompson, R. M., Beardall, J., Beringer, J., Grace, M. & Sardina, P. Means and extremes: constructing variability into community-level local weather change experiments. Ecol. Lett. 16, 799–806 (2013).
Perez, T. M., Stroud, J. T. & Feeley, Ok. J. Thermal bother within the tropics. Science 351, 1392–1393 (2016).
Huey, R. B. et al. Why tropical forest lizards are susceptible to local weather warming. Proc. R. Soc. B 276, 1939–1948 (2009).
Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Warmth stress and the health penalties of local weather change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).
R. Kearney, M. Exercise restriction and the mechanistic foundation for extinctions underneath local weather warming. Ecol. Lett. 16, 1470–1479 (2013).
Rezende, E. L., Bozinovic, F., Szilágyi, A. & Santos, M. Predicting temperature mortality and choice in pure Drosophila populations. Science 369, 1242–1245 (2020).
Chen, I.-C., Hill, J. Ok., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Fast vary shifts of species related to excessive ranges of local weather warming. Science 333, 1024–1026 (2011).
Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A world synthesis of animal phenological responses to local weather change. Nat. Clim. Change 8, 224–228 (2018).
Levy, O., Dayan, T., Porter, W. P. & Kronfeld-Schor, N. Time and ecological resilience: can diurnal animals compensate for local weather change by shifting to nocturnal exercise? Ecol. Monogr. 89, e01334 (2019).
Faurby, S. & Araújo, M. B. Anthropogenic vary contractions bias species local weather change forecasts. Nat. Clim. Change 8, 252–256 (2018).
Sunday, J. M. et al. Thermal-safety margins and the need of thermoregulatory conduct throughout latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).
Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E. & Evans, T. A. Microhabitats scale back animal’s publicity to local weather extremes. Glob. Change Biol. 20, 495–503 (2014).
Huey, R. B. et al. Predicting organismal vulnerability to local weather warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).
Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer “cold-blooded” animals towards local weather warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).
Morley, S. A., Peck, L. S., Sunday, J. M., Heiser, S. & Bates, A. E. Physiological acclimation and persistence of ectothermic species underneath excessive warmth occasions. Glob. Ecol. Biogeogr. 28, 1018–1037 (2019).
Cahill, A. E. et al. How does local weather change trigger extinction? Proc. R. Soc. B 280, 20121890 (2013).
Lewis, F. et al. in Local weather Change 2021: The Bodily Science Foundation. Contribution of Working Group I to the Sixth Evaluation Report of the Intergovernmental Panel on Local weather Change (eds Masson-Delmotte, V. et al.) 147–1926 (Cambridge Univ. Press, 2021).
Thakur, M. P., Bakker, E. S., Veen, G. C. & Harvey, J. A. Local weather extremes, rewilding, and the position of microhabitats. One Earth 2, 506–509 (2020).
Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an increasing risk of deadly dehydration. Proc. Natl Acad. Sci. USA 114, 2283–2288 (2017).
Thrasher, B. et al. NASA International every day downscaled projections, CMIP6. Sci. Information 9, 262 (2022).
Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Bias correcting local weather mannequin simulated every day temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 16, 3309–3314 (2012).
Jin, Z. et al. Do maize fashions seize the impacts of warmth and drought stresses on yield? Utilizing algorithm ensembles to determine profitable approaches. Glob. Change Biol. 22, 3112–3126 (2016).
Zhang, L., Yang, B., Li, S., Hou, Y. & Huang, D. Potential rice publicity to warmth stress alongside the Yangtze River in China underneath RCP8.5 state of affairs. Agric. Forest Meteorol. 248, 185–196 (2018).
Al-Bakri, J. et al. Evaluation of local weather modifications and their impression on barley yield in Mediterranean atmosphere utilizing NEX-GDDP downscaled GCMs and DSSAT. Earth Syst. Environ. 5, 751–766 (2021).
Semakula, H. M. et al. Prediction of future malaria hotspots underneath local weather change in sub-Saharan Africa. Clim. Change 143, 415–428 (2017).
Iwamura, T., Guzman-Holst, A. & Murray, Ok. A. Accelerating invasion potential of illness vector Aedes aegypti underneath local weather change. Nat. Commun. 11, 2130 (2020).
Jones, A. E. et al. Bluetongue danger underneath future climates. Nat. Clim. Change 9, 153–157 (2019).
Obradovich, N. & Fowler, J. H. Local weather change could alter human bodily exercise patterns. Nat. Hum. Behav. 1, 0097 (2017).
Obradovich, N., Migliorini, R., Mednick, S. C. & Fowler, J. H. Nighttime temperature and human sleep loss in a altering local weather. Sci. Adv. 3, e1601555 (2017).
Meehl, G. A. et al. Context for decoding equilibrium local weather sensitivity and transient local weather response from the CMIP6 Earth system fashions. Sci. Adv. 6, eaba1981 (2020).
Hausfather, Z., Marvel, Ok., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Local weather simulations: acknowledge the ‘sizzling mannequin’ downside. Nature 605, 26–29 (2022).
O’Neill, B. C. et al. The state of affairs mannequin intercomparison venture (ScenarioMIP) for CMIP6. Geosci. Mannequin Dev. 9, 3461–3482 (2016).
IPCC Particular Report on International Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).
IUCN Pink Record of Threatened Species Model 2017, 3 (IUCN, 2017).
Roll, U. et al. The worldwide distribution of tetrapods reveals a necessity for focused reptile conservation. Nat. Ecol. Evol. 1, 1677 (2017).
Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the size dependence of vary maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).
Maclean, I. M. Predicting future local weather at excessive spatial and temporal decision. Glob. Change Biol. 26, 1003–1011 (2020).
Warren, R. et al. Quantifying the good thing about early local weather change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).
Jiguet, F. et al. Thermal vary predicts hen inhabitants resilience to excessive excessive temperatures. Ecol. Lett. 9, 1321–1330 (2006).
Hobday, A. J. et al. A hierarchical method to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
Laufkötter, C., Zscheischler, J. & Frölicher, T. L. Excessive-impact marine heatwaves attributable to human-induced international warming. Science 369, 1621–1625 (2020).
Coumou, D. & Rahmstorf, S. A decade of climate extremes. Nat. Clim. Change 2, 491–496 (2012).
Oliver, E. C. et al. Longer and extra frequent marine heatwaves over the previous century. Nat. Commun. 9, 1324 (2018).
Discipline, C. B., Barros, V., Stocker, T. F. & Dahe, Q. Managing the Dangers of Excessive Occasions and Disasters to Advance Local weather Change Adaptation: Particular Report of the Intergovernmental Panel on Local weather Change (Cambridge Univ. Press, 2012).
Woolway, R. I. et al. Lake heatwaves underneath local weather change. Nature 589, 402–407 (2021).
Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound occasions within the ocean. Nature 600, 395–407 (2021).
Cahill, A. E. et al. Causes of warm-edge vary limits: systematic assessment, proximate elements and implications for local weather change. J. Biogeogr. 41, 429–442 (2014).
Wiens, J. J. Local weather-related native extinctions are already widespread amongst plant and animal species. PLoS Biol. 14, e2001104 (2016).
Valladares, F. et al. The results of phenotypic plasticity and native adaptation on forecasts of species vary shifts underneath local weather change. Ecol. Lett. 17, 1351–1364 (2014).
Bennett, J. M. et al. The evolution of crucial thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).
Sunday, J. M., Bates, A. E. & Dulvy, N. Ok. Thermal tolerance and the worldwide redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
Pearson, R. G. & Dawson, T. P. Predicting the impacts of local weather change on the distribution of species: are bioclimate envelope fashions helpful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).
Louthan, A. M., Doak, D. F. & Angert, A. L. The place and when do species interactions set vary limits? Tendencies Ecol. Evol. 30, 780–792 (2015).
Barbarossa, V. et al. Threats of world warming to the world’s freshwater fishes. Nat. Commun. 12, 1701 (2021).
Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature efficiency curve parameters in ectotherms suggest advanced responses to local weather change. Am. Nat. 177, 738–751 (2011).
Qu, Y.-F. & Wiens, J. J. Larger temperatures decrease charges of physiological and area of interest evolution. Proc. R. Soc. B 287, 20200823 (2020).
Pither, J. Local weather tolerance and interspecific variation in geographic vary dimension. Proc. R. Soc. Lond. B 270, 475–481 (2003).
Bennett, J. M. et al. GlobTherm, a world database on thermal tolerances for aquatic and terrestrial organisms. Sci. Information 5, 180022 (2018).
R Core Group R: A Language and Surroundings for Statistical Computing (R Basis for Statistical Computing, 2019); http://www.R-project.org/
Chen, H., Solar, J., Lin, W. & Xu, H. Comparability of CMIP6 and CMIP5 fashions in simulating local weather extremes. Sci. Bull. 65, 1415–1418 (2020).