Wednesday, February 8, 2023
HomeNatureEnhanced superconductivity in spin–orbit proximitized bilayer graphene

Enhanced superconductivity in spin–orbit proximitized bilayer graphene


  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • de la Barrera, S. C. et al. Cascade of isospin section transitions in Bernal-stacked bilayer graphene at zero magnetic subject. Nat. Phys. 18, 771–775 (2022).

    Article 

    Google Scholar
     

  • Seiler, A. M. et al. Quantum cascade of correlated phases in trigonally warped bilayer graphene. Nature 608, 298–302 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism close to three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Corridor impact in a moiré heterostructure. Science 367, 900–903 (2019).

    Article 
    ADS 

    Google Scholar
     

  • McCann, E. Asymmetry hole within the digital band construction of bilayer graphene. Phys. Rev. B 74, 161403 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. et al. Direct remark of a broadly tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McCann, E. & Koshino, M. The digital properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Origin and magnitude of ‘designer’ spin-orbit interplay in graphene on semiconducting transition steel dichalcogenides. Phys. Rev. X 6, 041020 (2016).


    Google Scholar
     

  • Gmitra, M. & Fabian, J. Proximity results in bilayer graphene on monolayer WSe2: field-effect spin valley locking, spin-orbit valve, and spin transistor. Phys. Rev. Lett. 119, 146401 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Khoo, J. Y., Morpurgo, A. F. & Levitov, L. On-demand spin–orbit interplay from which-layer tunability in bilayer graphene. Nano Lett. 17, 7003–7008 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Khoo, J. Y. & Levitov, L. Tunable quantum Corridor edge conduction in bilayer graphene via spin-orbit interplay. Phys. Rev. B 98, 115307 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Island, J. O. et al. Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity impact. Nature 571, 85–89 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, D. et al. Quantum Corridor impact measurement of spin–orbit coupling strengths in ultraclean bilayer graphene/WSe2 heterostructures. Nano Lett. 19, 7028–7034 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y. & Koshino, M. Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 99, 075438 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, Ok. & Younger, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dong, Z., Davydova, M., Ogunnaike, O. & Levitov, L. Isospin ferromagnetism and momentum polarization in bilayer graphene. Preprint at https://arxiv.org/abs/2110.15254 (2021).

  • Huang, C. et al. Spin and orbital metallic magnetism in rhombohedral trilayer graphene. Preprint at https://arxiv.org/abs/2203.12723 (2022).

  • Lu, J. M. et al. Proof for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Saito, Y. et al. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fatemi, V. & Ruhman, J. Synthesizing Coulombic superconductivity in van der Waals bilayers. Phys. Rev. B 98, 094517 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chou, Y.-Z., Wu, F. & Sarma, S. D. Enhanced superconductivity via digital tunneling in bernal bilayer graphene coupled to WSe2. Preprint at https://arxiv.org/abs/2206.09922 (2022).

  • Dong, Z. & Levitov, L. Superconductivity within the neighborhood of an isospin-polarized state in a cubic Dirac band. Preprint at https://arxiv.org/abs/2109.01133 (2021).

  • Ghazaryan, A., Holder, T., Serbyn, M. & Berg, E. Unconventional superconductivity in programs with annular fermi surfaces: software to rhombohedral trilayer graphene. Phys. Rev. Lett. 127, 247001 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qin, W. et al. Practical renormalization group research of superconductivity in rhombohedral trilayer graphene. Preprint at https://arxiv.org/abs/2203.09083 (2022).

  • You, Y.-Z. & Vishwanath, A. Kohn-Luttinger superconductivity and intervalley coherence in rhombohedral trilayer graphene. Phys. Rev. B 105, 134524 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cea, T., Pantaleón, P. A., Phong, V. T. & Guinea, F. Superconductivity from repulsive interactions in rhombohedral trilayer graphene: a Kohn-Luttinger-like mechanism. Phys. Rev. B 105, 075432 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chou, Y.-Z., Wu, F., Sau, J. D. & Sarma, S. D. Acoustic-phonon-mediated superconductivity in rhombohedral trilayer graphene. Phys. Rev. Lett. 127, 187001 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chou, Y.-Z., Wu, F., Sau, J. D. & Das Sarma, S. Acoustic-phonon-mediated superconductivity in Bernal bilayer graphene. Phys. Rev. B 105, L100503 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lake, E., Patri, A. S. & Senthil, T. Pairing symmetry of twisted bilayer graphene: a phenomenological synthesis. Phys. Rev. B 106, 104506 (2022).

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, J. M., Cao, Y., Watanabe, Ok., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hao, Z. et al. Electrical subject–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Promotion of superconductivity in magic-angle graphene multilayers. Science 377, 1538–1543 (2022).

  • Park, J. M. et al. Strong superconductivity in magic-angle multilayer graphene household. Nat. Mater 21, 877–883 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • David, A., Rakyta, P., Kormányos, A. & Burkard, G. Induced spin-orbit coupling in twisted graphene–transition steel dichalcogenide heterobilayers: twistronics meets spintronics. Phys. Rev. B 100, 085412 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Naimer, T., Zollner, Ok., Gmitra, M. & Fabian, J. Twist-angle dependent proximity induced spin-orbit coupling in graphene/transition steel dichalcogenide heterostructures. Phys. Rev. B 104, 195156 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zibrov, A. A. et al. Strong fractional quantum Corridor states and steady quantum section transitions in a half-filled bilayer graphene Landau degree. Nature 549, 360–364 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taychatanapat, T., Watanabe, Ok., Taniguchi, T. & Jarillo-Herrero, P. Electrically tunable transverse magnetic focusing in graphene. Nat. Phys. 9, 225–229 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yang, B. et al. Robust electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition steel dichalcogenide heterostructures. Phys. Rev. B 96, 041409 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Amann, J. et al. Counterintuitive gate dependence of weak antilocalization in bilayer graphene/WSe2 heterostructures. Phys. Rev. B 105, 115425 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Banszerus, L. et al. Extraordinary excessive room-temperature provider mobility in graphene-WSe2 heterostructures. Preprint at https://arxiv.org/abs/1909.09523 (2019).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular