Wednesday, February 8, 2023
HomeNatureCommentary of intrinsic chiral sure states within the continuum

Commentary of intrinsic chiral sure states within the continuum


  • Collins, J. T. et al. First remark of optical exercise in hyper-Rayleigh scattering. Phys. Rev. X 9, 011024 (2019).

    CAS 

    Google Scholar
     

  • Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Parappurath, N., Alpeggiani, F., Kuipers, L. & Verhagen, E. Direct remark of topological edge states in silicon photonic crystals: spin, dispersion, and chiral routing. Sci. Adv. 6, eaaw4137 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys. 4, 113–124 (2021).

    Article 

    Google Scholar
     

  • Gorkunov, M. V., Antonov, A. A. & Kivshar, Y. S. Metasurfaces with most chirality empowered by sure states within the continuum. Phys. Rev. Lett. 125, 093903 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Overvig, A., Yu, N. & Alu, A. Chiral quasi-ound states within the continuum. Phys. Rev. Lett. 126, 073001 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dixon, J., Lawrence, M., Barton, D. R. & Dionne, J. Self-isolated raman lasing with a chiral dielectric metasurface. Phys. Rev. Lett. 126, 123201 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gorkunov, M. V., Antonov, A. A., Tuz, V. R., Kupriianov, A. S. & Kivshar, Y. S. Sure states within the continuum underpin close to‐lossless most chirality in dielectric metasurfaces. Adv. Choose. Mater. 9, 2100797 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W. et al. Circularly polarized states spawning from sure states within the continuum. Phys. Rev. Lett. 123, 116104 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, J. et al. Commentary of large extrinsic chirality empowered by quasi-bound states within the continuum. Phys. Rev. Appl. 16, 064018 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shi, T. et al. Planar chiral metasurfaces with maximal and tunable chiroptical response pushed by sure states within the continuum. Nat. Commun. 13, 4111 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Barron, L. D. Molecular Mild Scattering and Optical Exercise (Cambridge Univ. Press, 2004).

  • Fernandez-Corbaton, I., Fruhnert, M. & Rockstuhl, C. Objects of most electromagnetic chirality. Phys. Rev. X 6, 031013 (2016).


    Google Scholar
     

  • Wu, C. et al. Spectrally selective chiral silicon metasurfaces based mostly on infrared Fano resonances. Nat. Commun. 5, 3892 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Plum, E., Fedotov, V. A. & Zheludev, N. I. Optical exercise in extrinsically chiral metamaterial. Appl. Phys. Lett. 93, 191911 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Plum, E. et al. Metamaterials: optical exercise with out chirality. Phys. Rev. Lett. 102, 113902 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Barron, L. D. True and false chirality and absolute uneven synthesis. J. Am. Chem. Soc. 108, 5539–5542 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Barron, L. D. True and false chirality and absolute enantioselection. Rend. Lincei 24, 179–189 (2013).

    Article 

    Google Scholar
     

  • Valev, V. Okay., Baumberg, J. J., Sibilia, C. & Verbiest, T. Chirality and chiroptical results in plasmonic nanostructures: fundamentals, latest progress, and outlook. Adv. Mater. 25, 2517–2534 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hentschel, M., Schaferling, M., Duan, X., Giessen, H. & Liu, N. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Mun, J. et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Mild Sci. Appl. 9, 139 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hsu, C. W. et al. Commentary of trapped mild inside the radiation continuum. Nature 499, 188–191 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Sure states within the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koshelev, Okay., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Uneven metasurfaces with high-Q resonances ruled by sure states within the continuum. Phys. Rev. Lett. 121, 193903 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Azzam, S. I., Shalaev, V. M., Boltasseva, A. & Kildishev, A. V. Formation of sure states within the continuum in hybrid plasmonic-photonic programs. Phys. Rev. Lett. 121, 253901 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Excessive-Q quasibound states within the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 123, 253901 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yin, X., Jin, J., Soljacic, M., Peng, C. & Zhen, B. Commentary of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Poulikakos, L. V. et al. Optical chirality flux as a helpful far-field probe of chiral close to fields. ACS Photonics 3, 1619–1625 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cameron, R. P., Barnett, S. M. & Yao, A. M. Optical helicity, optical spin and associated portions in electromagnetic concept. New J. Phys. 14, 053050 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Tang, Y. & Cohen, A. E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral mild. Science 332, 333–336 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taghizadeh, A. & Chung, I. S. Quasi sure states within the continuum with few unit cells of photonic crystal slab. Appl. Phys. Lett. 111, 031114 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hentschel, M. et al. Optical Properties of chiral three-dimensional plasmonic oligomers on the onset of charge-transfer plasmons. ACS Nano 6, 10355–10365 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S. et al. Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun. 3, 942 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Cui, Y., Kang, L., Lan, S., Rodrigues, S. & Cai, W. Big chiral optical response from a twisted-arc metamaterial. Nano Lett. 14, 1021–1025 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Y., Gao, J. & Yang, X. Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking. Nano Lett. 18, 520–527 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, Z., Chen, X., Wang, M., Dong, J. & Zheng, Y. Excessive-performance ultrathin energetic chiral metamaterials. ACS Nano 12, 5030–5041 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S. et al. Spin-selective transmission in chiral folded metasurfaces. Nano Lett. 19, 3432–3439 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Semnani, B., Flannery, J., Al Maruf, R. & Bajcsy, M. Spin-preserving chiral photonic crystal mirror. Mild Sci. Appl. 9, 23 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, A. Y. et al. Big intrinsic chiro-optical exercise in planar dielectric nanostructures. Mild Sci. Appl. 7, 17158 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ji, C.-Y. et al. Synthetic propeller chirality and counterintuitive reversal of round dichroism in twisted meta-molecules. Nano Lett. 21, 6828–6834 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular