Collins, J. T. et al. First remark of optical exercise in hyper-Rayleigh scattering. Phys. Rev. X 9, 011024 (2019).
Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).
Parappurath, N., Alpeggiani, F., Kuipers, L. & Verhagen, E. Direct remark of topological edge states in silicon photonic crystals: spin, dispersion, and chiral routing. Sci. Adv. 6, eaaw4137 (2020).
Chen, Y. et al. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys. 4, 113–124 (2021).
Gorkunov, M. V., Antonov, A. A. & Kivshar, Y. S. Metasurfaces with most chirality empowered by sure states within the continuum. Phys. Rev. Lett. 125, 093903 (2020).
Overvig, A., Yu, N. & Alu, A. Chiral quasi-ound states within the continuum. Phys. Rev. Lett. 126, 073001 (2021).
Dixon, J., Lawrence, M., Barton, D. R. & Dionne, J. Self-isolated raman lasing with a chiral dielectric metasurface. Phys. Rev. Lett. 126, 123201 (2021).
Gorkunov, M. V., Antonov, A. A., Tuz, V. R., Kupriianov, A. S. & Kivshar, Y. S. Sure states within the continuum underpin close to‐lossless most chirality in dielectric metasurfaces. Adv. Choose. Mater. 9, 2100797 (2021).
Liu, W. et al. Circularly polarized states spawning from sure states within the continuum. Phys. Rev. Lett. 123, 116104 (2019).
Wu, J. et al. Commentary of large extrinsic chirality empowered by quasi-bound states within the continuum. Phys. Rev. Appl. 16, 064018 (2021).
Shi, T. et al. Planar chiral metasurfaces with maximal and tunable chiroptical response pushed by sure states within the continuum. Nat. Commun. 13, 4111 (2022).
Barron, L. D. Molecular Mild Scattering and Optical Exercise (Cambridge Univ. Press, 2004).
Fernandez-Corbaton, I., Fruhnert, M. & Rockstuhl, C. Objects of most electromagnetic chirality. Phys. Rev. X 6, 031013 (2016).
Wu, C. et al. Spectrally selective chiral silicon metasurfaces based mostly on infrared Fano resonances. Nat. Commun. 5, 3892 (2014).
Plum, E., Fedotov, V. A. & Zheludev, N. I. Optical exercise in extrinsically chiral metamaterial. Appl. Phys. Lett. 93, 191911 (2008).
Plum, E. et al. Metamaterials: optical exercise with out chirality. Phys. Rev. Lett. 102, 113902 (2009).
Barron, L. D. True and false chirality and absolute uneven synthesis. J. Am. Chem. Soc. 108, 5539–5542 (1986).
Barron, L. D. True and false chirality and absolute enantioselection. Rend. Lincei 24, 179–189 (2013).
Valev, V. Okay., Baumberg, J. J., Sibilia, C. & Verbiest, T. Chirality and chiroptical results in plasmonic nanostructures: fundamentals, latest progress, and outlook. Adv. Mater. 25, 2517–2534 (2013).
Hentschel, M., Schaferling, M., Duan, X., Giessen, H. & Liu, N. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).
Mun, J. et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Mild Sci. Appl. 9, 139 (2020).
Hsu, C. W. et al. Commentary of trapped mild inside the radiation continuum. Nature 499, 188–191 (2013).
Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Sure states within the continuum. Nat. Rev. Mater. 1, 16048 (2016).
Koshelev, Okay., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Uneven metasurfaces with high-Q resonances ruled by sure states within the continuum. Phys. Rev. Lett. 121, 193903 (2018).
Azzam, S. I., Shalaev, V. M., Boltasseva, A. & Kildishev, A. V. Formation of sure states within the continuum in hybrid plasmonic-photonic programs. Phys. Rev. Lett. 121, 253901 (2018).
Liu, Z. et al. Excessive-Q quasibound states within the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 123, 253901 (2019).
Yin, X., Jin, J., Soljacic, M., Peng, C. & Zhen, B. Commentary of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020).
Poulikakos, L. V. et al. Optical chirality flux as a helpful far-field probe of chiral close to fields. ACS Photonics 3, 1619–1625 (2016).
Cameron, R. P., Barnett, S. M. & Yao, A. M. Optical helicity, optical spin and associated portions in electromagnetic concept. New J. Phys. 14, 053050 (2012).
Tang, Y. & Cohen, A. E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral mild. Science 332, 333–336 (2011).
Taghizadeh, A. & Chung, I. S. Quasi sure states within the continuum with few unit cells of photonic crystal slab. Appl. Phys. Lett. 111, 031114 (2017).
Hentschel, M. et al. Optical Properties of chiral three-dimensional plasmonic oligomers on the onset of charge-transfer plasmons. ACS Nano 6, 10355–10365 (2012).
Zhang, S. et al. Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun. 3, 942 (2012).
Cui, Y., Kang, L., Lan, S., Rodrigues, S. & Cai, W. Big chiral optical response from a twisted-arc metamaterial. Nano Lett. 14, 1021–1025 (2014).
Chen, Y., Gao, J. & Yang, X. Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking. Nano Lett. 18, 520–527 (2018).
Wu, Z., Chen, X., Wang, M., Dong, J. & Zheng, Y. Excessive-performance ultrathin energetic chiral metamaterials. ACS Nano 12, 5030–5041 (2018).
Yang, S. et al. Spin-selective transmission in chiral folded metasurfaces. Nano Lett. 19, 3432–3439 (2019).
Semnani, B., Flannery, J., Al Maruf, R. & Bajcsy, M. Spin-preserving chiral photonic crystal mirror. Mild Sci. Appl. 9, 23 (2020).
Zhu, A. Y. et al. Big intrinsic chiro-optical exercise in planar dielectric nanostructures. Mild Sci. Appl. 7, 17158 (2018).
Ji, C.-Y. et al. Synthetic propeller chirality and counterintuitive reversal of round dichroism in twisted meta-molecules. Nano Lett. 21, 6828–6834 (2021).