de Laat, W. & Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499–506 (2013).
Spitz, F. Gene regulation at a distance: from distant enhancers to 3D regulatory ensembles. Semin. Cell Dev. Biol. 57, 57–67 (2016).
Rickels, R. & Shilatifard, A. Enhancer logic and mechanics in growth and illness. Traits Cell Biol. 28, 608–630 (2018).
Maurano, M. T. et al. Systematic localization of frequent disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).
Oliver, G. et al. Prox1, a prospero-related homeobox gene expressed throughout mouse growth. Mech. Dev. 44, 3–16 (1993).
Wigle, J. T., Chowdhury, Ok., Gruss, P. & Oliver, G. Prox1 perform is essential for mouse lens-fibre elongation. Nat. Genet. 21, 318–322 (1999).
Dyer, M. A., Livesey, F. J., Cepko, C. L. & Oliver, G. Prox1 perform controls progenitor cell proliferation and horizontal cell genesis within the mammalian retina. Nat. Genet. 34, 53–58 (2003).
Sosa-Pineda, B., Wigle, J. T. & Oliver, G. Hepatocyte migration throughout liver growth requires Prox1. Nat. Genet. 25, 254–255 (2000).
Wang, J. et al. Prox1 exercise controls pancreas morphogenesis and participates within the manufacturing of “secondary transition” pancreatic endocrine cells. Dev. Biol. 286, 182–194 (2005).
Risebro, C. A. et al. Prox1 maintains muscle construction and development within the creating coronary heart. Improvement 136, 495–505 (2009).
Wigle, J. T. & Oliver, G. Prox1 perform is required for the event of the murine lymphatic system. Cell 98, 769–778 (1999).
Harvey, N. L. et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency trigger adult-onset weight problems. Nat. Genet. 37, 1072–1081 (2005).
Johnson, N. C. et al. Lymphatic endothelial cell id is reversible and its upkeep requires Prox1 exercise. Genes Dev. 22, 3282–3291 (2008).
Francois, M. et al. Sox18 induces growth of the lymphatic vasculature in mice. Nature 456, 643–647 (2008).
Srinivasan, R. S. et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early upkeep of Prox1 expression in lymphatic endothelial cells. Genes Dev. 24, 696–707 (2010).
Kazenwadel, J. et al. Loss-of-function germline GATA2 mutations in sufferers with MDS/AML or monoMAC syndrome and first lymphedema reveal a key position for GATA2 within the lymphatic vasculature. Blood 119, 1283–1291 (2012).
Ostergaard, P. et al. Mutations in GATA2 trigger main lymphedema related to a predisposition to acute myeloid leukemia (Emberger syndrome). Nat. Genet. 43, 929–931 (2011).
Kazenwadel, J. et al. GATA2 is required for lymphatic vessel valve growth and upkeep. J. Clin. Make investments. 125, 2979–2994 (2015).
Petrova, T. V. et al. Faulty valves and irregular mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat. Med. 10, 974–981 (2004).
Norrmen, C. et al. FOXC2 controls formation and maturation of lymphatic accumulating vessels by way of cooperation with NFATc1. J. Cell Biol. 185, 439–457 (2009).
Srinivasan, R. S. & Oliver, G. Prox1 dosage controls the variety of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves. Genes Dev. 25, 2187–2197 (2011).
Kothary, R. et al. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Improvement 105, 707–714 (1989).
Shin, M. et al. Valves are a conserved function of the zebrafish lymphatic system. Dev. Cell 51, 374–386.e5 (2019).
Candy, D. T. et al. Lymph stream regulates accumulating lymphatic vessel maturation in vivo. J. Clin. Make investments. 125, 2995–3007 (2015).
Sabin, F. R. Preliminary notice on the differentiation of angioblasts and the strategy by which they produce blood-vessels, blood-plasma and purple blood-cells as seen within the dwelling chick. 1917. J. Hematother. Stem Cell Res. 11, 5–7 (2002).
de Bruijn, M. F., Speck, N. A., Peeters, M. C. & Dzierzak, E. Definitive hematopoietic stem cells first develop inside the main arterial areas of the mouse embryo. EMBO J. 19, 2465–2474 (2000).
Nakano, H. et al. Haemogenic endocardium contributes to transient definitive haematopoiesis. Nat. Commun. 4, 1564 (2013).
Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikkola, H. Ok. The placenta is a distinct segment for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).
Nakano, T., Kodama, H. & Honjo, T. Technology of lymphohematopoietic cells from embryonic stem cells in tradition. Science 265, 1098–1101 (1994).
McGrath, Ok. E. et al. Distinct sources of hematopoietic progenitors emerge earlier than HSCs and supply purposeful blood cells within the mammalian embryo. Cell Rep. 11, 1892–1904 (2015).
Gao, L. et al. RUNX1 and the endothelial origin of blood. Exp. Hematol. 68, 2–9 (2018).
Wigle, J. T. et al. A vital position for Prox1 within the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002).
Sabine, A. et al. Mechanotransduction, PROX1, and FOXC2 cooperate to regulate connexin37 and calcineurin throughout lymphatic-valve formation. Dev. Cell 22, 430–445 (2012).
Hope, Ok. J. et al. An RNAi display screen identifies Msi2 and Prox1 as having reverse roles within the regulation of hematopoietic stem cell exercise. Cell Stem Cell 7, 101–113 (2010).
Okuda, Ok. S. et al. lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel growth in zebrafish. Improvement 139, 2381–2391 (2012).
Dunworth W. P. et al. Bone morphogenetic protein 2 signaling negatively modulates lymphatic growth in vertebrate embryos. Circ. Res. 114, 56–66 (2014).
van Impel, A. et al. Divergence of zebrafish and mouse lymphatic cell destiny specification pathways. Improvement 141, 1228–1238 (2014).
Hogan, B. M. et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet. 41, 396–398 (2009).
Dubchak, I. et al. Lively conservation of noncoding sequences revealed by three-way species comparisons. Genome Res. 10, 1304–1306 (2000).
Frazer, Ok. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA: computational instruments for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004).
Brudno, M. et al. LAGAN and multi-LAGAN: environment friendly instruments for large-scale a number of alignment of genomic DNA. Genome Res. 13, 721–731 (2003).
Bessa, J. et al. Zebrafish enhancer detection (ZED) vector: a brand new software to facilitate transgenesis and the purposeful evaluation of cis-regulatory areas in zebrafish. Dev. Dyn. 238, 2409–2417 (2009).
Furumoto, T. A. et al. Notochord-dependent expression of MFH1 and PAX1 cooperates to keep up the proliferation of sclerotome cells through the vertebral column growth. Dev. Biol. 210, 15–29 (1999).
Kazenwadel, J., Michael, M. Z. & Harvey, N. L. Prox1 expression is negatively regulated by miR-181 in endothelial cells. Blood 116, 2395–2401 (2010).
Naumova, N., Smith, E. M., Zhan, Y. & Dekker, J. Evaluation of long-range chromatin interactions utilizing chromosome conformation seize. Strategies 58, 192–203 (2012).
Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics information visualization and exploration. Temporary Bioinform. 14, 178–192 (2013).
Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: quick processing of NGS alignment codecs. Bioinformatics 31, 2032–2034 (2015).
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing information. Bioinformatics 31, 166–169 (2015).
Robinson, M. D., McCarthy, D. J. & Smyth, G. Ok. edgeR: a Bioconductor package deal for differential expression evaluation of digital gene expression information. Bioinformatics 26, 139–140 (2010).
Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based method for decoding genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
Irizarry, R. A. et al. Exploration, normalization, and summaries of excessive density oligonucleotide array probe degree information. Biostatistics 4, 249–264 (2003).