Sunday, February 5, 2023
HomeNatureA Prox1 enhancer represses haematopoiesis within the lymphatic vasculature

A Prox1 enhancer represses haematopoiesis within the lymphatic vasculature


  • de Laat, W. & Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499–506 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Spitz, F. Gene regulation at a distance: from distant enhancers to 3D regulatory ensembles. Semin. Cell Dev. Biol. 57, 57–67 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Rickels, R. & Shilatifard, A. Enhancer logic and mechanics in growth and illness. Traits Cell Biol. 28, 608–630 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Maurano, M. T. et al. Systematic localization of frequent disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oliver, G. et al. Prox1, a prospero-related homeobox gene expressed throughout mouse growth. Mech. Dev. 44, 3–16 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Wigle, J. T., Chowdhury, Ok., Gruss, P. & Oliver, G. Prox1 perform is essential for mouse lens-fibre elongation. Nat. Genet. 21, 318–322 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Dyer, M. A., Livesey, F. J., Cepko, C. L. & Oliver, G. Prox1 perform controls progenitor cell proliferation and horizontal cell genesis within the mammalian retina. Nat. Genet. 34, 53–58 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Sosa-Pineda, B., Wigle, J. T. & Oliver, G. Hepatocyte migration throughout liver growth requires Prox1. Nat. Genet. 25, 254–255 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Prox1 exercise controls pancreas morphogenesis and participates within the manufacturing of “secondary transition” pancreatic endocrine cells. Dev. Biol. 286, 182–194 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Risebro, C. A. et al. Prox1 maintains muscle construction and development within the creating coronary heart. Improvement 136, 495–505 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wigle, J. T. & Oliver, G. Prox1 perform is required for the event of the murine lymphatic system. Cell 98, 769–778 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Harvey, N. L. et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency trigger adult-onset weight problems. Nat. Genet. 37, 1072–1081 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, N. C. et al. Lymphatic endothelial cell id is reversible and its upkeep requires Prox1 exercise. Genes Dev. 22, 3282–3291 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Francois, M. et al. Sox18 induces growth of the lymphatic vasculature in mice. Nature 456, 643–647 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Srinivasan, R. S. et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early upkeep of Prox1 expression in lymphatic endothelial cells. Genes Dev. 24, 696–707 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kazenwadel, J. et al. Loss-of-function germline GATA2 mutations in sufferers with MDS/AML or monoMAC syndrome and first lymphedema reveal a key position for GATA2 within the lymphatic vasculature. Blood 119, 1283–1291 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ostergaard, P. et al. Mutations in GATA2 trigger main lymphedema related to a predisposition to acute myeloid leukemia (Emberger syndrome). Nat. Genet. 43, 929–931 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kazenwadel, J. et al. GATA2 is required for lymphatic vessel valve growth and upkeep. J. Clin. Make investments. 125, 2979–2994 (2015).

    Article 

    Google Scholar
     

  • Petrova, T. V. et al. Faulty valves and irregular mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat. Med. 10, 974–981 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Norrmen, C. et al. FOXC2 controls formation and maturation of lymphatic accumulating vessels by way of cooperation with NFATc1. J. Cell Biol. 185, 439–457 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Srinivasan, R. S. & Oliver, G. Prox1 dosage controls the variety of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves. Genes Dev. 25, 2187–2197 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kothary, R. et al. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Improvement 105, 707–714 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Shin, M. et al. Valves are a conserved function of the zebrafish lymphatic system. Dev. Cell 51, 374–386.e5 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Candy, D. T. et al. Lymph stream regulates accumulating lymphatic vessel maturation in vivo. J. Clin. Make investments. 125, 2995–3007 (2015).

    Article 

    Google Scholar
     

  • Sabin, F. R. Preliminary notice on the differentiation of angioblasts and the strategy by which they produce blood-vessels, blood-plasma and purple blood-cells as seen within the dwelling chick. 1917. J. Hematother. Stem Cell Res. 11, 5–7 (2002).

    Article 

    Google Scholar
     

  • de Bruijn, M. F., Speck, N. A., Peeters, M. C. & Dzierzak, E. Definitive hematopoietic stem cells first develop inside the main arterial areas of the mouse embryo. EMBO J. 19, 2465–2474 (2000).

    Article 

    Google Scholar
     

  • Nakano, H. et al. Haemogenic endocardium contributes to transient definitive haematopoiesis. Nat. Commun. 4, 1564 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikkola, H. Ok. The placenta is a distinct segment for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Nakano, T., Kodama, H. & Honjo, T. Technology of lymphohematopoietic cells from embryonic stem cells in tradition. Science 265, 1098–1101 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McGrath, Ok. E. et al. Distinct sources of hematopoietic progenitors emerge earlier than HSCs and supply purposeful blood cells within the mammalian embryo. Cell Rep. 11, 1892–1904 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gao, L. et al. RUNX1 and the endothelial origin of blood. Exp. Hematol. 68, 2–9 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wigle, J. T. et al. A vital position for Prox1 within the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Sabine, A. et al. Mechanotransduction, PROX1, and FOXC2 cooperate to regulate connexin37 and calcineurin throughout lymphatic-valve formation. Dev. Cell 22, 430–445 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hope, Ok. J. et al. An RNAi display screen identifies Msi2 and Prox1 as having reverse roles within the regulation of hematopoietic stem cell exercise. Cell Stem Cell 7, 101–113 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Okuda, Ok. S. et al. lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel growth in zebrafish. Improvement 139, 2381–2391 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dunworth W. P. et al. Bone morphogenetic protein 2 signaling negatively modulates lymphatic growth in vertebrate embryos. Circ. Res. 114, 56–66 (2014).

    Article 
    CAS 

    Google Scholar
     

  • van Impel, A. et al. Divergence of zebrafish and mouse lymphatic cell destiny specification pathways. Improvement 141, 1228–1238 (2014).

    Article 

    Google Scholar
     

  • Hogan, B. M. et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet. 41, 396–398 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Dubchak, I. et al. Lively conservation of noncoding sequences revealed by three-way species comparisons. Genome Res. 10, 1304–1306 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Frazer, Ok. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA: computational instruments for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Brudno, M. et al. LAGAN and multi-LAGAN: environment friendly instruments for large-scale a number of alignment of genomic DNA. Genome Res. 13, 721–731 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Bessa, J. et al. Zebrafish enhancer detection (ZED) vector: a brand new software to facilitate transgenesis and the purposeful evaluation of cis-regulatory areas in zebrafish. Dev. Dyn. 238, 2409–2417 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Furumoto, T. A. et al. Notochord-dependent expression of MFH1 and PAX1 cooperates to keep up the proliferation of sclerotome cells through the vertebral column growth. Dev. Biol. 210, 15–29 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kazenwadel, J., Michael, M. Z. & Harvey, N. L. Prox1 expression is negatively regulated by miR-181 in endothelial cells. Blood 116, 2395–2401 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Naumova, N., Smith, E. M., Zhan, Y. & Dekker, J. Evaluation of long-range chromatin interactions utilizing chromosome conformation seize. Strategies 58, 192–203 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics information visualization and exploration. Temporary Bioinform. 14, 178–192 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: quick processing of NGS alignment codecs. Bioinformatics 31, 2032–2034 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing information. Bioinformatics 31, 166–169 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. Ok. edgeR: a Bioconductor package deal for differential expression evaluation of digital gene expression information. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based method for decoding genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Irizarry, R. A. et al. Exploration, normalization, and summaries of excessive density oligonucleotide array probe degree information. Biostatistics 4, 249–264 (2003).

    Article 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular