Wednesday, February 8, 2023
HomeNatureA molecular community of conserved elements retains ribosomes dormant within the egg

A molecular community of conserved elements retains ribosomes dormant within the egg


  • Woodland, H. R. Modifications within the polysome content material of growing Xenopus laevis embryos. Dev. Biol. 40, 90–101 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Brandis, J. W. & Raff, R. A. Translation of oogenetic mRNA in sea urchin eggs and early embryos. Demonstration of a change in translational effectivity following fertilization. Dev. Biol. 67, 99–113 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Kronja, I. et al. Widespread modifications within the posttranscriptional panorama on the Drosophila oocyte-to-embryo transition. Cell Rep. 7, 1495–1508 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Bachvarova, R. & De Leon, V. Saved and polysomal ribosomes of mouse ova. Dev. Biol. 58, 248–254 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Burkholder, G. D., Comings, D. E. & Okada, T. A. A storage type of ribosomes in mouse oocytes. Exp. Cell. Res. 69, 361–371 (1971).

    Article 
    CAS 

    Google Scholar
     

  • Alberts, B. et al. in Molecular Biology of the Cell fifth edn (eds Anderson, M. & Granum, S.) 1287–1291 (Garland Science, 2008).

  • Locati, M. D. et al. Linking maternal and somatic 5S rRNA sorts with completely different sequence-specific non-LTR retrotransposons. RNA 23, 446–456 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Locati, M. D. et al. Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA sorts throughout zebrafish growth. RNA 23, 1188–1199 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cenik, E. S. et al. Maternal ribosomes are ample for tissue diversification throughout embryonic growth in C. elegans. Dev. Cell 48, 811–826.e6 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Danilchik, M. V. & Hille, M. B. Sea urchin egg and embryo ribosomes: variations in translational exercise in a cell-free system. Dev. Biol. 84, 291–298 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Chassé, H., Boulben, S., Cormier, P. & Morales, J. Translational management of canonical and non-canonical translation initiation elements on the sea urchin egg to embryo transition. Int. J. Mol. Sci. 20, 626 (2019).

    Article 

    Google Scholar
     

  • Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic change in translational management. Nature 508, 66–71 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stebbins-Boaz, B., Cao, Q., Moor, C. H., de, Mendez, R. & Richter, J. D. Maskin is a CPEB-associated issue that transiently interacts with eIF-4E. Mol. Cell 4, 1017–1027 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Smith, P. R., Pandit, S. C., Loerch, S. & Campbell, Z. T. The area between notes: rising roles for translationally silent ribosomes. Developments Biochem. Sci 47, 477–491 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Beckert, B. et al. Construction of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1. Nat. Microbiol. 3, 1115–1121 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Beckert, B. et al. Construction of the Bacillus subtilis hibernating 100S ribosome reveals the premise for 70S dimerization. EMBO J. 36, 2061–2072 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Barandun, J., Hunziker, M., Vossbrinck, C. R. & Klinge, S. Evolutionary compaction and adaptation visualized by the construction of the dormant microsporidian ribosome. Nat. Microbiol. 4, 1798–1804 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Brown, A., Baird, M. R., Yip, M. C., Murray, J. & Shao, S. Buildings of translationally inactive mammalian ribosomes. eLife 7, e40486 (2018).

    Article 

    Google Scholar
     

  • Van Dyke, N., Child, J. & Van Dyke, M. W. Stm1p, a ribosome-associated protein, is vital for protein synthesis in Saccharomyces cerevisiae beneath dietary stress situations. J. Mol. Biol. 358, 1023–1031 (2006).

    Article 

    Google Scholar
     

  • Smith, P. R. et al. Functionally distinct roles for eEF2K within the management of ribosome availability and p-body abundance. Nat. Commun. 12, 6789 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shetty, S., Hofstetter, J., Battaglioni, S., Ritz, D. & Corridor, M. N. TORC1 phosphorylates and inhibits the ribosome preservation issue Stm1 to activate dormant ribosomes. Preprint at https://doi.org/10.1101/2022.08.08.503151 (2022).

  • Wells, J. N. et al. Construction and performance of yeast Lso2 and human CCDC124 sure to hibernating ribosomes. PLoS Biol. 18, e3000780 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Seefeldt, A. C. et al. Construction of the mammalian antimicrobial peptide Bac7(1–16) sure inside the exit tunnel of a bacterial ribosome. Nucleic Acids Res. 44, 2429–2438 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Casteels, P., Ampe, C., Jacobs, F., Vaeck, M. & Tempst, P. Apidaecins: antibacterial peptides from honeybees. EMBO J. 8, 2387–2391 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Krizsan, A., Prahl, C., Goldbach, T., Knappe, D. & Hoffmann, R. Brief proline-rich antimicrobial peptides inhibit both the bacterial 70S ribosome or the meeting of its massive 50S subunit. ChemBioChem 16, 2304–2308 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Metafora, S., Felicetti, L. & Gambino, R. The mechanism of protein synthesis activation after fertilization of sea urchin eggs. Proc. Natl Acad. Sci. USA 68, 600–604 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gambino, R., Metafora, S., Felicetti, L. & Raisman, J. Properties of the ribosomal salt wash from unfertilized and fertilized sea urchin eggs and its impact on pure mRNA translation. Biochim. Biophys. Acta 312, 377–391 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Hille, M. B. Inhibitor of protein synthesis remoted from ribosomes of unfertilised eggs and embryos of sea urchins. Nature 249, 556–558 (1974).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chassé, H., Boulben, S., Costache, V., Cormier, P. & Morales, J. Evaluation of translation utilizing polysome profiling. Nucleic Acids Res. 45, e15 (2017).


    Google Scholar
     

  • Chew, G.-L. et al. Ribosome profiling reveals resemblance between lengthy non-coding RNAs and 5′ leaders of coding RNAs. Growth 140, 2828–2834 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Pauli, A. et al. Toddler: an embryonic sign that promotes cell motion through apelin receptors. Science 343, 1248636 (2014).

    Article 

    Google Scholar
     

  • Gutierrez, E. et al. eIF5A promotes translation of polyproline motifs. Mol. Cell 51, 35–45 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Schuller, A. P., Wu, C. C.-C., Dever, T. E., Buskirk, A. R. & Inexperienced, R. eIF5A features globally in translation elongation and termination. Mol. Cell 66, 194–205.e5 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, C. et al. Construction of the hypusinylated eukaryotic translation issue eIF-5A sure to the ribosome. Nucleic Acids Res. 44, 1944–1951 (2016).

    Article 

    Google Scholar
     

  • Rodnina, M. V., Savelsbergh, A., Katunin, V. I. & Wintermeyer, W. Hydrolysis of GTP by elongation issue G drives tRNA motion on the ribosome. Nature 385, 37–41 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Flis, J. et al. tRNA translocation by the eukaryotic 80S ribosome and the Affect of GTP hydrolysis. Cell Rep. 25, 2676–2688.e7 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hayashi, H. et al. Tight interplay of eEF2 within the presence of Stm1 on ribosome. J. Biochem. 163, 177–185 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Anger, A. M. et al. Buildings of the human and Drosophila 80S ribosome. Nature 497, 80–85 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Solar, L., Ryan, D. G., Zhou, M., Solar, T.-T. & Lavker, R. M. EEDA: a protein related to an early stage of stratified epithelial differentiation. J. Cell. Physiol. 206, 103–111 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Ma, X. et al. Regulation of cell proliferation within the retinal pigment epithelium: differential regulation of the death-associated protein like-1 DAPL1 by various MITF splice kinds. Pigment Cell Melanoma Res. 31, 411–422 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ma, X. et al. DAPL1, a susceptibility locus for age-related macular degeneration, acts as a novel suppressor of cell proliferation within the retinal pigment epithelium. Hum. Mol. Genet. 26, 1612–1621 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Deiss, L. P., Feinstein, E., Berissi, H., Cohen, O. & Kimchi, A. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the γ interferon-induced cell demise. Genes Dev. 9, 15–30 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Koren, I., Reem, E. & Kimchi, A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr. Biol. 20, 1093–1098 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Saini, P., Eyler, D. E., Inexperienced, R. & Dever, T. E. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118–121 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, M. H., Nishimura, Okay., Zanelli, C. F. & Valentini, S. R. Purposeful significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38, 491–500 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Greber, B. J., Boehringer, D., Montellese, C. & Ban, N. Cryo-EM buildings of Arx1 and maturation elements Rei1 and Jjj1 sure to the 60S ribosomal subunit. Nat. Struct. Mol. Biol. 19, 1228–1233 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Klingauf-Nerurkar, P. et al. The GTPase Nog1 co-ordinates the meeting, maturation and high quality management of distant ribosomal practical facilities. eLife 9, e52474 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM buildings utilizing neural networks. Nat. Strategies 18, 176–185 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rossi, D. et al. Proof for a detrimental cooperativity between eIF5A and eEF2 on binding to the ribosome. PLoS ONE 11, e0154205 (2016).

    Article 

    Google Scholar
     

  • Kao, A. et al. Growth of a novel cross-linking technique for quick and correct identification of cross-linked peptides of protein complexes. Mol. Cell. Proteomics 10, M110.002212 (2011).

    Article 

    Google Scholar
     

  • Balagopal, V. & Parker, R. Stm1 modulates translation after 80S formation in Saccharomyces cerevisiae. RNA 17, 835–842 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Blobel, G. & Potter, V. R. Research on free and membrane-bound ribosomes in rat liver: I. Distribution as associated to complete mobile RNA. J. Mol. Biol. 26, 279–292 (1967).

    Article 
    CAS 

    Google Scholar
     

  • Marygold, S. J. et al. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol, 8, R216 (2007).

    Article 

    Google Scholar
     

  • Fortier, S., MacRae, T., Bilodeau, M., Sargeant, T. & Sauvageau, G. Haploinsufficiency display screen highlights two distinct teams of ribosomal protein genes important for embryonic stem cell destiny. Proc. Natl Acad. Sci. USA 112, 2127–2132 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Amsterdam, A. et al. Many ribosomal protein genes are most cancers genes in zebrafish. PLoS Biol. 2, E139 (2004).

    Article 

    Google Scholar
     

  • Vecchi, G. et al. Proteome-wide commentary of the phenomenon of life on the sting of solubility. Proc. Natl Acad. Sci. USA 117, 1015–1020 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Autophagy-dependent ribosomal RNA degradation is crucial for sustaining nucleotide homeostasis throughout C. elegans growth. eLife 7, e36588 (2018).

    Article 

    Google Scholar
     

  • Cohen, J. Statistical Energy Evaluation for the Behavioral Sciences https://doi.org/10.4324/9780203771587 (Routledge, 1988).

  • Juszkiewicz, S. et al. ZNF598 is a top quality management sensor of collided ribosomes. Mol. Cell 72, 469–481.e7 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. Structural foundation for selective stalling of human ribosome nascent chain complexes by a drug-like molecule. Nat. Struct. Mol. Biol. 26, 501–509 (2019).

    Article 

    Google Scholar
     

  • Chandrasekaran, V. et al. Mechanism of ribosome stalling throughout translation of a poly(A) tail. Nat. Struct. Mol. Biol. 26, 1132–1140 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gagnon, J. A. et al. Environment friendly mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale evaluation of single-guide RNAs. PLoS ONE 9, e98186 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gibson, D. G. et al. Enzymatic meeting of DNA molecules as much as a number of hundred kilobases. Nat. Strategies 6, 343–345 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Nair, S., Lindeman, R. E. & Pelegri, F. In vitro oocyte culture-based manipulation of zebrafish maternal genes. Dev. Dyn. 242, 44–52 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sive, H. L., Grainger, R. M. & Harland, R. M. Early Growth of Xenopus laevis (Chilly Spring Harbor Laboratory Press, 2000).

  • Khatter, H. et al. Purification, characterization and crystallization of the human 80S ribosome. Nucleic Acids Res. 42, e49 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dorfer, V. et al. MS Amanda, a common identification algorithm optimized for top accuracy tandem mass spectra. J. Proteome Res. 13, 3679–3684 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Käll, L., Canterbury, J. D., Weston, J., Noble, W. S. & MacCoss, M. J. Semi-supervised studying for peptide identification from shotgun proteomics datasets. Nat. Strategies 4, 923–925 (2007).

    Article 

    Google Scholar
     

  • Taus, T. et al. Common and assured phosphorylation web site localization utilizing phosphoRS. J. Proteome Res. 10, 5354–5362 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Doblmann, J. et al. apQuant: correct label-free quantification by high quality filtering. J. Proteome Res. 18, 535–541 (2019).

    CAS 

    Google Scholar
     

  • Smyth, G. Okay. in Bioinformatics and Computational Biology Options Utilizing R and Bioconductor (eds. Gentleman, R. et al.) 397–420 (Springer, 2005).

  • Pirklbauer, G. J. et al. MS Annika: a brand new cross-linking search engine. J. Proteome Res. 20, 2560–2569 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Goddard, T. D. et al. UCSF ChimeraX: assembly fashionable challenges in visualization and evaluation. Protein Sci. 27, 14–25 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, A., Mariappan, M., Appathurai, S. & Hegde, R. S. In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Strategies Mol. Biol. 619, 339–363 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Feng, Q. & Shao, S. In vitro reconstitution of translational arrest pathways. Strategies 137, 20–36 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for fast unsupervised cryo-EM construction dedication. Nat. Strategies 14, 290–296 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Sanchez-Garcia, R. et al. DeepEMhancer: a deep studying resolution for cryo-EM quantity post-processing. Commun. Biol. 4, 874 (2021).

    Article 

    Google Scholar
     

  • Emsley, P. & Cowtan, Okay. Coot: model-building instruments for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular construction dedication utilizing X-rays, neutrons and electrons: current developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, H. et al. Automated and correct deposition of buildings solved by X-ray diffraction to the Protein Knowledge Financial institution. Acta Crystallogr. D 60, 1833–1839 (2004).

    Article 

    Google Scholar
     

  • Cabrera-Quio, L. E., Schleiffer, A., Mechtler, Okay. & Pauli, A. Zebrafish Ski7 tunes RNA ranges throughout the oocyte-to-embryo transition. PLoS Genet. 17, e1009390 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Perez-Riverol, Y. et al. The PRIDE database and associated instruments and assets in 2019: bettering help for quantification knowledge. Nucleic Acids Res. 47, D442–D450 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Session, A. M. et al. Genome evolution within the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fujihara, Y. et al. The conserved fertility issue SPACA4/Bouncer has divergent modes of motion in vertebrate fertilization. Proc. Natl Acad. Sci. USA 118, e2108777118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gagnon, M. G. et al. Buildings of proline-rich peptides sure to the ribosome reveal a standard mechanism of protein synthesis inhibition. Nucleic Acids Res. 44, 2439–2450 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Florin, T. et al. An antimicrobial peptide that inhibits translation by trapping launch elements on the ribosome. Nat. Struct. Mol. Biol. 24, 752–757 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kargas, V. et al. Mechanism of completion of peptidyltransferase centre meeting in eukaryotes. eLife 8, e44904 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wu, S. et al. Numerous roles of meeting elements revealed by buildings of late nuclear pre-60S ribosomes. Nature 534, 133–137 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Polikanov, Y. S., Steitz, T. A. & Innis, C. A. A proton wire to couple aminoacyl-tRNA lodging and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 21, 787–793 (2014).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular