Woodland, H. R. Modifications within the polysome content material of growing Xenopus laevis embryos. Dev. Biol. 40, 90–101 (1974).
Brandis, J. W. & Raff, R. A. Translation of oogenetic mRNA in sea urchin eggs and early embryos. Demonstration of a change in translational effectivity following fertilization. Dev. Biol. 67, 99–113 (1978).
Kronja, I. et al. Widespread modifications within the posttranscriptional panorama on the Drosophila oocyte-to-embryo transition. Cell Rep. 7, 1495–1508 (2014).
Bachvarova, R. & De Leon, V. Saved and polysomal ribosomes of mouse ova. Dev. Biol. 58, 248–254 (1977).
Burkholder, G. D., Comings, D. E. & Okada, T. A. A storage type of ribosomes in mouse oocytes. Exp. Cell. Res. 69, 361–371 (1971).
Alberts, B. et al. in Molecular Biology of the Cell fifth edn (eds Anderson, M. & Granum, S.) 1287–1291 (Garland Science, 2008).
Locati, M. D. et al. Linking maternal and somatic 5S rRNA sorts with completely different sequence-specific non-LTR retrotransposons. RNA 23, 446–456 (2017).
Locati, M. D. et al. Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA sorts throughout zebrafish growth. RNA 23, 1188–1199 (2017).
Cenik, E. S. et al. Maternal ribosomes are ample for tissue diversification throughout embryonic growth in C. elegans. Dev. Cell 48, 811–826.e6 (2019).
Danilchik, M. V. & Hille, M. B. Sea urchin egg and embryo ribosomes: variations in translational exercise in a cell-free system. Dev. Biol. 84, 291–298 (1981).
Chassé, H., Boulben, S., Cormier, P. & Morales, J. Translational management of canonical and non-canonical translation initiation elements on the sea urchin egg to embryo transition. Int. J. Mol. Sci. 20, 626 (2019).
Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic change in translational management. Nature 508, 66–71 (2014).
Stebbins-Boaz, B., Cao, Q., Moor, C. H., de, Mendez, R. & Richter, J. D. Maskin is a CPEB-associated issue that transiently interacts with eIF-4E. Mol. Cell 4, 1017–1027 (1999).
Smith, P. R., Pandit, S. C., Loerch, S. & Campbell, Z. T. The area between notes: rising roles for translationally silent ribosomes. Developments Biochem. Sci 47, 477–491 (2022).
Beckert, B. et al. Construction of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1. Nat. Microbiol. 3, 1115–1121 (2018).
Beckert, B. et al. Construction of the Bacillus subtilis hibernating 100S ribosome reveals the premise for 70S dimerization. EMBO J. 36, 2061–2072 (2017).
Barandun, J., Hunziker, M., Vossbrinck, C. R. & Klinge, S. Evolutionary compaction and adaptation visualized by the construction of the dormant microsporidian ribosome. Nat. Microbiol. 4, 1798–1804 (2019).
Brown, A., Baird, M. R., Yip, M. C., Murray, J. & Shao, S. Buildings of translationally inactive mammalian ribosomes. eLife 7, e40486 (2018).
Van Dyke, N., Child, J. & Van Dyke, M. W. Stm1p, a ribosome-associated protein, is vital for protein synthesis in Saccharomyces cerevisiae beneath dietary stress situations. J. Mol. Biol. 358, 1023–1031 (2006).
Smith, P. R. et al. Functionally distinct roles for eEF2K within the management of ribosome availability and p-body abundance. Nat. Commun. 12, 6789 (2021).
Shetty, S., Hofstetter, J., Battaglioni, S., Ritz, D. & Corridor, M. N. TORC1 phosphorylates and inhibits the ribosome preservation issue Stm1 to activate dormant ribosomes. Preprint at https://doi.org/10.1101/2022.08.08.503151 (2022).
Wells, J. N. et al. Construction and performance of yeast Lso2 and human CCDC124 sure to hibernating ribosomes. PLoS Biol. 18, e3000780 (2020).
Seefeldt, A. C. et al. Construction of the mammalian antimicrobial peptide Bac7(1–16) sure inside the exit tunnel of a bacterial ribosome. Nucleic Acids Res. 44, 2429–2438 (2016).
Casteels, P., Ampe, C., Jacobs, F., Vaeck, M. & Tempst, P. Apidaecins: antibacterial peptides from honeybees. EMBO J. 8, 2387–2391 (1989).
Krizsan, A., Prahl, C., Goldbach, T., Knappe, D. & Hoffmann, R. Brief proline-rich antimicrobial peptides inhibit both the bacterial 70S ribosome or the meeting of its massive 50S subunit. ChemBioChem 16, 2304–2308 (2015).
Metafora, S., Felicetti, L. & Gambino, R. The mechanism of protein synthesis activation after fertilization of sea urchin eggs. Proc. Natl Acad. Sci. USA 68, 600–604 (1971).
Gambino, R., Metafora, S., Felicetti, L. & Raisman, J. Properties of the ribosomal salt wash from unfertilized and fertilized sea urchin eggs and its impact on pure mRNA translation. Biochim. Biophys. Acta 312, 377–391 (1973).
Hille, M. B. Inhibitor of protein synthesis remoted from ribosomes of unfertilised eggs and embryos of sea urchins. Nature 249, 556–558 (1974).
Chassé, H., Boulben, S., Costache, V., Cormier, P. & Morales, J. Evaluation of translation utilizing polysome profiling. Nucleic Acids Res. 45, e15 (2017).
Chew, G.-L. et al. Ribosome profiling reveals resemblance between lengthy non-coding RNAs and 5′ leaders of coding RNAs. Growth 140, 2828–2834 (2013).
Pauli, A. et al. Toddler: an embryonic sign that promotes cell motion through apelin receptors. Science 343, 1248636 (2014).
Gutierrez, E. et al. eIF5A promotes translation of polyproline motifs. Mol. Cell 51, 35–45 (2013).
Schuller, A. P., Wu, C. C.-C., Dever, T. E., Buskirk, A. R. & Inexperienced, R. eIF5A features globally in translation elongation and termination. Mol. Cell 66, 194–205.e5 (2017).
Schmidt, C. et al. Construction of the hypusinylated eukaryotic translation issue eIF-5A sure to the ribosome. Nucleic Acids Res. 44, 1944–1951 (2016).
Rodnina, M. V., Savelsbergh, A., Katunin, V. I. & Wintermeyer, W. Hydrolysis of GTP by elongation issue G drives tRNA motion on the ribosome. Nature 385, 37–41 (1997).
Flis, J. et al. tRNA translocation by the eukaryotic 80S ribosome and the Affect of GTP hydrolysis. Cell Rep. 25, 2676–2688.e7 (2018).
Hayashi, H. et al. Tight interplay of eEF2 within the presence of Stm1 on ribosome. J. Biochem. 163, 177–185 (2018).
Anger, A. M. et al. Buildings of the human and Drosophila 80S ribosome. Nature 497, 80–85 (2013).
Solar, L., Ryan, D. G., Zhou, M., Solar, T.-T. & Lavker, R. M. EEDA: a protein related to an early stage of stratified epithelial differentiation. J. Cell. Physiol. 206, 103–111 (2006).
Ma, X. et al. Regulation of cell proliferation within the retinal pigment epithelium: differential regulation of the death-associated protein like-1 DAPL1 by various MITF splice kinds. Pigment Cell Melanoma Res. 31, 411–422 (2018).
Ma, X. et al. DAPL1, a susceptibility locus for age-related macular degeneration, acts as a novel suppressor of cell proliferation within the retinal pigment epithelium. Hum. Mol. Genet. 26, 1612–1621 (2017).
Deiss, L. P., Feinstein, E., Berissi, H., Cohen, O. & Kimchi, A. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the γ interferon-induced cell demise. Genes Dev. 9, 15–30 (1995).
Koren, I., Reem, E. & Kimchi, A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr. Biol. 20, 1093–1098 (2010).
Saini, P., Eyler, D. E., Inexperienced, R. & Dever, T. E. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118–121 (2009).
Park, M. H., Nishimura, Okay., Zanelli, C. F. & Valentini, S. R. Purposeful significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38, 491–500 (2010).
Greber, B. J., Boehringer, D., Montellese, C. & Ban, N. Cryo-EM buildings of Arx1 and maturation elements Rei1 and Jjj1 sure to the 60S ribosomal subunit. Nat. Struct. Mol. Biol. 19, 1228–1233 (2012).
Klingauf-Nerurkar, P. et al. The GTPase Nog1 co-ordinates the meeting, maturation and high quality management of distant ribosomal practical facilities. eLife 9, e52474 (2020).
Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM buildings utilizing neural networks. Nat. Strategies 18, 176–185 (2021).
Rossi, D. et al. Proof for a detrimental cooperativity between eIF5A and eEF2 on binding to the ribosome. PLoS ONE 11, e0154205 (2016).
Kao, A. et al. Growth of a novel cross-linking technique for quick and correct identification of cross-linked peptides of protein complexes. Mol. Cell. Proteomics 10, M110.002212 (2011).
Balagopal, V. & Parker, R. Stm1 modulates translation after 80S formation in Saccharomyces cerevisiae. RNA 17, 835–842 (2011).
Blobel, G. & Potter, V. R. Research on free and membrane-bound ribosomes in rat liver: I. Distribution as associated to complete mobile RNA. J. Mol. Biol. 26, 279–292 (1967).
Marygold, S. J. et al. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol, 8, R216 (2007).
Fortier, S., MacRae, T., Bilodeau, M., Sargeant, T. & Sauvageau, G. Haploinsufficiency display screen highlights two distinct teams of ribosomal protein genes important for embryonic stem cell destiny. Proc. Natl Acad. Sci. USA 112, 2127–2132 (2015).
Amsterdam, A. et al. Many ribosomal protein genes are most cancers genes in zebrafish. PLoS Biol. 2, E139 (2004).
Vecchi, G. et al. Proteome-wide commentary of the phenomenon of life on the sting of solubility. Proc. Natl Acad. Sci. USA 117, 1015–1020 (2020).
Liu, Y. et al. Autophagy-dependent ribosomal RNA degradation is crucial for sustaining nucleotide homeostasis throughout C. elegans growth. eLife 7, e36588 (2018).
Cohen, J. Statistical Energy Evaluation for the Behavioral Sciences https://doi.org/10.4324/9780203771587 (Routledge, 1988).
Juszkiewicz, S. et al. ZNF598 is a top quality management sensor of collided ribosomes. Mol. Cell 72, 469–481.e7 (2018).
Li, W. et al. Structural foundation for selective stalling of human ribosome nascent chain complexes by a drug-like molecule. Nat. Struct. Mol. Biol. 26, 501–509 (2019).
Chandrasekaran, V. et al. Mechanism of ribosome stalling throughout translation of a poly(A) tail. Nat. Struct. Mol. Biol. 26, 1132–1140 (2019).
Gagnon, J. A. et al. Environment friendly mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale evaluation of single-guide RNAs. PLoS ONE 9, e98186 (2014).
Gibson, D. G. et al. Enzymatic meeting of DNA molecules as much as a number of hundred kilobases. Nat. Strategies 6, 343–345 (2009).
Nair, S., Lindeman, R. E. & Pelegri, F. In vitro oocyte culture-based manipulation of zebrafish maternal genes. Dev. Dyn. 242, 44–52 (2013).
Sive, H. L., Grainger, R. M. & Harland, R. M. Early Growth of Xenopus laevis (Chilly Spring Harbor Laboratory Press, 2000).
Khatter, H. et al. Purification, characterization and crystallization of the human 80S ribosome. Nucleic Acids Res. 42, e49 (2014).
Dorfer, V. et al. MS Amanda, a common identification algorithm optimized for top accuracy tandem mass spectra. J. Proteome Res. 13, 3679–3684 (2014).
Käll, L., Canterbury, J. D., Weston, J., Noble, W. S. & MacCoss, M. J. Semi-supervised studying for peptide identification from shotgun proteomics datasets. Nat. Strategies 4, 923–925 (2007).
Taus, T. et al. Common and assured phosphorylation web site localization utilizing phosphoRS. J. Proteome Res. 10, 5354–5362 (2011).
Doblmann, J. et al. apQuant: correct label-free quantification by high quality filtering. J. Proteome Res. 18, 535–541 (2019).
Smyth, G. Okay. in Bioinformatics and Computational Biology Options Utilizing R and Bioconductor (eds. Gentleman, R. et al.) 397–420 (Springer, 2005).
Pirklbauer, G. J. et al. MS Annika: a brand new cross-linking search engine. J. Proteome Res. 20, 2560–2569 (2021).
Goddard, T. D. et al. UCSF ChimeraX: assembly fashionable challenges in visualization and evaluation. Protein Sci. 27, 14–25 (2018).
Sharma, A., Mariappan, M., Appathurai, S. & Hegde, R. S. In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Strategies Mol. Biol. 619, 339–363 (2010).
Feng, Q. & Shao, S. In vitro reconstitution of translational arrest pathways. Strategies 137, 20–36 (2018).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for fast unsupervised cryo-EM construction dedication. Nat. Strategies 14, 290–296 (2017).
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).
Sanchez-Garcia, R. et al. DeepEMhancer: a deep studying resolution for cryo-EM quantity post-processing. Commun. Biol. 4, 874 (2021).
Emsley, P. & Cowtan, Okay. Coot: model-building instruments for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
Liebschner, D. et al. Macromolecular construction dedication utilizing X-rays, neutrons and electrons: current developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).
Yang, H. et al. Automated and correct deposition of buildings solved by X-ray diffraction to the Protein Knowledge Financial institution. Acta Crystallogr. D 60, 1833–1839 (2004).
Cabrera-Quio, L. E., Schleiffer, A., Mechtler, Okay. & Pauli, A. Zebrafish Ski7 tunes RNA ranges throughout the oocyte-to-embryo transition. PLoS Genet. 17, e1009390 (2021).
Perez-Riverol, Y. et al. The PRIDE database and associated instruments and assets in 2019: bettering help for quantification knowledge. Nucleic Acids Res. 47, D442–D450 (2019).
Session, A. M. et al. Genome evolution within the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).
Fujihara, Y. et al. The conserved fertility issue SPACA4/Bouncer has divergent modes of motion in vertebrate fertilization. Proc. Natl Acad. Sci. USA 118, e2108777118 (2021).
Gagnon, M. G. et al. Buildings of proline-rich peptides sure to the ribosome reveal a standard mechanism of protein synthesis inhibition. Nucleic Acids Res. 44, 2439–2450 (2016).
Florin, T. et al. An antimicrobial peptide that inhibits translation by trapping launch elements on the ribosome. Nat. Struct. Mol. Biol. 24, 752–757 (2017).
Kargas, V. et al. Mechanism of completion of peptidyltransferase centre meeting in eukaryotes. eLife 8, e44904 (2019).
Wu, S. et al. Numerous roles of meeting elements revealed by buildings of late nuclear pre-60S ribosomes. Nature 534, 133–137 (2016).
Polikanov, Y. S., Steitz, T. A. & Innis, C. A. A proton wire to couple aminoacyl-tRNA lodging and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 21, 787–793 (2014).