Qing, G. et al. Latest advances and challenges of electrocatalytic N2 discount to ammonia. Chem. Rev. 120, 5437–5516 (2020).
Guo, J. & Chen, P. Catalyst: NH3 as an vitality service. Chem 3, 709–712 (2017).
Ye, T.-N. et al. Emptiness-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).
Li, Ok. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).
Suryanto, B. H. R. et al. Nitrogen discount to ammonia at excessive effectivity and charges primarily based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021).
Soloveichik, G. Electrochemical synthesis of ammonia as a possible different to the Haber–Bosch course of. Nat. Catal. 2, 377–380 (2019).
Smith, C., Hill, A. Ok. & Torrente-Murciano, L. Present and future position of Haber–Bosch ammonia in a carbon-free vitality panorama. Vitality Environ. Sci. 13, 331–344 (2020).
Malmali, M. et al. Higher absorbents for ammonia separation. ACS Maintain. Chem. Eng. 6, 6536–6546 (2018).
Smith, C., McCormick, A. V. & Cussler, E. L. Optimizing the situations for ammonia manufacturing utilizing absorption. ACS Maintain. Chem. Eng. 7, 4019–4029 (2019).
Rieth, A. J., Wright, A. M. & Dincă, M. Kinetic stability of steel–natural frameworks for corrosive and coordinating fuel seize. Nat. Rev. Mater. 4, 708–725 (2019).
Kajiwara, T. et al. A scientific examine on the steadiness of porous coordination polymers towards ammonia. Chem. Eur. J. 20, 15611–15617 (2014).
Mason, J. A. et al. Methane storage in versatile steel–natural frameworks with intrinsic thermal administration. Nature 527, 357–361 (2015).
Godfrey, H. G. W. et al. Ammonia storage by reversible host–visitor website alternate in a sturdy steel–natural framework. Angew. Chem. Int. Ed. 57, 14778–14781 (2018).
Chen, Y. et al. Removing of ammonia emissions by way of reversible structural transformation in M(BDC) (M = Cu, Zn, Cd) steel–natural frameworks. Environ. Sci. Technol. 54, 3636–3642 (2020).
Chen, Y. et al. Environmentally pleasant synthesis of versatile MOFs M(NA)2 (M = Zn, Co, Cu, Cd) with giant and regenerable ammonia capability. J. Mater. Chem. A 6, 9922–9929 (2018).
Chen, Y., Li, L., Li, J., Ouyang, Ok. & Yang, J. Ammonia seize and versatile transformation of M-2 (INA)(M = Cu, Co, Ni, Cd) sequence supplies. J. Hazard. Mater. 306, 340–347 (2016).
Lyu, P. et al. Ammonia seize by way of an unconventional reversible guest-induced metal-linker bond dynamics in a extremely steady steel–natural framework. Chem. Mater. 33, 6186–6192 (2021).
Kumagai, H. et al. Steel−natural frameworks from copper dimers with cis– and trans-1,4-cyclohexanedicarboxylate and cis,cis-1,3,5-cyclohexanetricarboxylate. Inorg. Chem. 46, 5949–5956 (2007).
Seki, Ok., Takamizawa, S. & Mori, W. Characterization of microporous copper(II) dicarboxylates (fumarate, terephthalate, and trans-1,4-cyclohexanedicarboxylate) by fuel adsorption. Chem. Lett. 30, 122–123 (2001).
Kim, D. W. et al. Excessive ammonia uptake of a steel–natural framework adsorbent in a large strain vary. Angew. Chemie Int. Ed. 59, 22531–22536 (2020).
McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303–308 (2015).
Reed, D. A. et al. A spin transition mechanism for cooperative adsorption in steel–natural frameworks. Nature 550, 96–100 (2017).
Liu, C. Y. & Aika, Ok. Ammonia absorption on alkaline earth halides as ammonia separation and storage process. Bull. Chem. Soc. Jpn 77, 123–131 (2004).
Kang, D. W. et al. A hydrogen‐bonded natural framework (HOF) with kind IV NH3 adsorption habits. Angew. Chem. Int. Ed. 131, 16298–16301 (2019).
Chen, Y. et al. Antenna-protected steel–natural squares for water/ammonia uptake with glorious stability and regenerability. ACS Maintain. Chem. Eng. 5, 5082–5089 (2017).
Steiner, T. The hydrogen bond within the stable state. Angew. Chem. Int. Ed. 41, 48–76 (2002).
Wang, L., Chen, L., Wang, H. L. & Liao, D. L. The adsorption refrigeration traits of alkaline-earth steel chlorides and its composite adsorbents. Renew. Vitality 34, 1016–1023 (2009).
Wang, L. W., Wang, R. Z., Lu, Z. S., Chen, C. J. & Wu, J. Y. Comparability of the adsorption efficiency of compound adsorbent in a refrigeration cycle with and with out mass restoration. Chem. Eng. Sci. 61, 3761–3770 (2006).
Rieth, A. J., Tulchinsky, Y. & Dincă, M. Excessive and reversible ammonia uptake in mesoporous azolate steel–natural frameworks with open Mn, Co, and Ni websites. J. Am. Chem. Soc. 138, 9401–9404 (2016).
Katz, M. J. et al. Excessive volumetric uptake of ammonia utilizing Cu-MOF-74/Cu-CPO-27. Dalt. Trans. 45, 4150–4153 (2016).
Hiraide, S., Tanaka, H., Ishikawa, N. & Miyahara, M. T. Intrinsic thermal administration capabilities of versatile steel–natural frameworks for carbon dioxide separation and seize. ACS Appl. Mater. Interfaces 9, 41066–41077 (2017).
Feldmann, W. Ok., Esterhuysen, C. & Barbour, L. J. Stress-gradient sorption calorimetry of versatile porous supplies: implications for intrinsic thermal administration. ChemSusChem 13, 5220–5223 (2020).
An, G. et al. Steel–natural frameworks for ammonia‐primarily based thermal vitality storage. Small 17, 2102689 (2021).
Liu, Z. et al. The potential use of steel–natural framework/ammonia working pairs in adsorption chillers. J. Mater. Chem. A 9, 6188–6195 (2021).
Kale, M. J. et al. Optimizing ammonia separation by way of reactive absorption for sustainable ammonia synthesis. ACS Appl. Vitality Mater. 3, 2576–2584 (2020).
Hrtus, D. J., Nowrin, F. H., Lomas, A., Fotsa, Y. & Malmali, M. Reaching+ 95% ammonia purity by optimizing the absorption and desorption situations of supported steel halides. ACS Maintain. Chem. Eng. 10, 204–212 (2021).
Irving, H. & Williams, R. J. P. The steadiness of transition-metal complexes. J. Chem. Soc. 3192–3210 (1953).
Paoletti, P. Formation of steel complexes with ethylenediamine: a essential survey of equilibrium constants, enthalpy and entropy values. Pure Appl. Chem. 56, 491–522 (1984).
Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, 2016).
Jiang, L. & Roskilly, A. P. Thermal conductivity, permeability and response attribute enhancement of ammonia stable sorbents: a assessment. Int. J. Warmth Mass Transf. 130, 1206–1225 (2019).
Rigaku Oxford Diffraction CrysAlisProfessional Software program System, model 1.171.39.7a (Rigaku, 2015).
Sheldrick, G. M. Crystal Construction Refinement with SHELXL. Acta Crystallogr. C 71, 3−8 (2015).
Sheldrick, G. M. SHELXS (Univ. Göttingen, 2014).
Sheldrick, G. M. A brief historical past of SHELX. Acta Crystallogr. A 64, 112−122 (2008).
Sheldrick, G. M. SHELXL (Univ. Göttingen, 2014).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. Ok. & Puschmann, H. OLEX2: a whole construction resolution, refinement and evaluation program. J. Appl. Crystallogr. 42, 339−341 (2009).
Carson, C. et al. Construction resolution from powder diffraction of copper 1,4-benzenedicarboxylate. Eur. J. Inorg. Chem. 2014, 2140−2145 (2014).